

Universalmessgerät Softwareversion 2.00.XX

B 9310 0533 B 9310 0534 B 9310 0535 B 9310 0536

Bender GmbH & Co. KG Londorfer Str. 65 • 35305 Grünberg • Germany Postfach 1161 • 35301 Grünberg • Germany

Tel.: +49 6401 807-0 Fax: +49 6401 807-259

E-Mail: info@bender.de www.bender.de © Bender GmbH & Co. KG

Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Herausgebers. Änderungen vorbehalten!

Inhaltsverzeichnis

1.	Dies	e Dokumentation effektiv nutzen	7
	1.1	Hinweise zur Benutzung	7
	1.2	Technische Unterstützung: Service und Support	7
	1.3	Schulungen	9
	1.4	Lieferbedingungen, Garantie, Gewährleistung und Haftung	9
2.	Sich	erheit	11
	2.1	Bestimmungsgemäße Verwendung	11
	2.2	Qualifiziertes Personal	11
	2.3	Sicherheitshinweise allgemein	11
3.	Gerä	tebeschreibung	13
	3.1	Einsatzbereich	13
	3.2	Gerätemerkmale	13
	3.3	Versionen	14
	3.3.1	PEM533	14
	3.3.2	PEM533-251	14
	3.4	Anwendungsbeispiel	15
	3.5	Funktionsbeschreibung	15
	3.6	Front- und Rückansicht	16
4.	Mon	tage und Anschluss	17
	4.1	Projektierung	17
	4.2	Sicherheitshinweise	17
	4.3	Das Gerät montieren	17
	4.3.1	Maßbilder	17
	4.3.2	Fronttafeleinbau	18
	4.4	Das Gerät anschließen	18
	4.4.1	Sicherheitshinweise	19

	4.4.2	Vorsicherungen 19
	4.4.3	Anschluss Messstromwandler 19
	4.5	Hinweise zum Anschluss 19
	4.6	Anschlussbild 19
	4.7	Anschlussschemata Spannungseingänge 21
	4.7.1	Dreiphasen-4-Leitersysteme (TN-, TT-, IT-Systeme) 21
	4.7.2	Dreiphasen-3-Leitersystem 21
	4.7.3	Anschluss über Spannungswandler 22
	4.8	Digitale Eingänge 22
	4.9	Digitale Ausgänge 22
5.	Inbe	triebnahme
	5.1	Ordnungsgemäßen Anschluss prüfen 23
	5.2	Vor dem Einschalten
	5.3	Einschalten
	5.4	System
6.	Bedi	enen 25
6.	Bedi 6.1	enen
6.	Bedi 6.1 6.2	enen
6.	Bedi 6.1 6.2 6.3	enen25Bedienelemente kennenlernen25Test LC-Display26Standarddisplayanzeigen kennenlernen26
6.	Bedi 6.1 6.2 6.3 6.4	enen25Bedienelemente kennenlernen25Test LC-Display26Standarddisplayanzeigen kennenlernen26Leistungs- und Strombedarfe (Demand Display)28
6.	Bedi 6.1 6.2 6.3 6.4 6.5	enen25Bedienelemente kennenlernen25Test LC-Display26Standarddisplayanzeigen kennenlernen26Leistungs- und Strombedarfe (Demand Display)28LED-Anzeige29
6.	Bedi 6.1 6.2 6.3 6.4 6.5 6.6	enen25Bedienelemente kennenlernen25Test LC-Display26Standarddisplayanzeigen kennenlernen26Leistungs- und Strombedarfe (Demand Display)28LED-Anzeige29Standardanzeige30
6.	Bedi 6.1 6.2 6.3 6.4 6.5 6.6 6.7	enen25Bedienelemente kennenlernen25Test LC-Display26Standarddisplayanzeigen kennenlernen26Leistungs- und Strombedarfe (Demand Display)28LED-Anzeige29Standardanzeige30Datenanzeige30
6.	Bedi 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.7.1	enen25Bedienelemente kennenlernen25Test LC-Display26Standarddisplayanzeigen kennenlernen26Leistungs- und Strombedarfe (Demand Display)28LED-Anzeige29Standardanzeige30Datenanzeige30Taster "V/I"31
6.	Bedi 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.7.1 6.7.2	enen25Bedienelemente kennenlernen25Test LC-Display26Standarddisplayanzeigen kennenlernen26Leistungs- und Strombedarfe (Demand Display)28LED-Anzeige29Standardanzeige30Datenanzeige30Taster "V/I"31Taster "POWER"33
6.	Bedi 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.7.1 6.7.2 6.7.3	enen25Bedienelemente kennenlernen25Test LC-Display26Standarddisplayanzeigen kennenlernen26Leistungs- und Strombedarfe (Demand Display)28LED-Anzeige29Standardanzeige30Datenanzeige30Taster "V/I"31Taster "HARMONICS"34
6.	Bedi 6.1 6.2 6.3 6.4 6.5 6.7 6.7.1 6.7.2 6.7.3 6.7.4	enen25Bedienelemente kennenlernen25Test LC-Display26Standarddisplayanzeigen kennenlernen26Leistungs- und Strombedarfe (Demand Display)28LED-Anzeige29Standardanzeige30Datenanzeige30Taster "V/I"31Taster "POWER"33Taster "HARMONICS"34Taster "ENERGY"36
6.	Bedi 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.7.1 6.7.2 6.7.3 6.7.4 6.8	enen25Bedienelemente kennenlernen25Test LC-Display26Standarddisplayanzeigen kennenlernen26Leistungs- und Strombedarfe (Demand Display)28LED-Anzeige29Standardanzeige30Datenanzeige30Taster "V/I"31Taster "POWER"33Taster "HARMONICS"34Taster "ENERGY"36Setup über Taster am Gerät36
6.	Bedi 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.7.1 6.7.2 6.7.3 6.7.4 6.8 6.8.1	enen25Bedienelemente kennenlernen25Test LC-Display26Standarddisplayanzeigen kennenlernen26Leistungs- und Strombedarfe (Demand Display)28LED-Anzeige29Standardanzeige30Datenanzeige30Taster "V/I"31Taster "POWER"33Taster "ENERGY"36Setup über Taster am Gerät36Setup: Bedeutung der Taster36
6.	Bedi 6.1 6.2 6.3 6.4 6.5 6.7 6.7.1 6.7.2 6.7.3 6.7.4 6.8 6.8.1 6.8.2	enen25Bedienelemente kennenlernen25Test LC-Display26Standarddisplayanzeigen kennenlernen26Leistungs- und Strombedarfe (Demand Display)28LED-Anzeige29Standardanzeige30Datenanzeige30Taster "V/I"31Taster "POWER"33Taster "ENERGY"34Taster "ENERGY"36Setup über Taster am Gerät36Setup: Bedeutung der Taster36Setup: Übersichtsdiagramm Menü36

	6.10	Konfigurationsbeispiel: Einstellung Messstromwandler	. 43
7.	Anw	endung / Ein- und Ausgänge	45
	7.1	Digitale Eingänge	. 45
	7.2	Digitale Ausgänge	. 45
	7.3	Anzeige Energy Pulsing	. 45
	7.4	Leistung und Energie	. 45
	7.4.1	Phasenwinkel von Spannung und Strom	. 45
	7.4.2	Energie	. 46
	7.4.3	Bedarf (Demand DMD)	. 46
	7.5	Setpoints	. 47
	7.5.1	Steuer-Setpoints	. 47
	7.5.2	Setpoints der digitalen Ein- und Ausgänge (DI-Setpoint)	. 49
	7.6	Speicher	. 49
	7.6.1	Speicher Spitzenbedarf (Peak demand)	. 49
	7.6.2	Speicher Max- und Min-Werte	. 49
	7.6.3	Ereignisspeicher (SOE-Log)	. 51
	7.7	Power Quality	. 51
	7.7.1	Harmonische Verzerrung	51
	7.7.2	Unsymmetrie	. 52
8.	Mod	bus Register Übersicht	53
	8.1	Basis-Messwerte	. 53
	8.2	Energie-Messung	. 56
	8.3	Oberschwingungs-Messung	. 57
	8.4	Bedarf	. 58
	8.5	Extremwerte während Bedarfsmessungszeitfenster	. 59
	8.5.1	Maximalwerte Bedarf	. 59
	8.5.2	Minimalwerte Bedarf	. 61
	8.6	Spitzenbedarf	62
	8.6.1	Spitzenbedarf Aktueller Monat	62
	8.6.2	Spitzenbedarf Vormonat	62
	8.7	Speicher Maximal-/Minimalwerte (Max/Min-Log)	63

	8.7.1	Maximalwerte aktueller Monat	63	
	8.7.2	Minimalwerte aktueller Monat	64	
	8.7.3	Maximalwerte Vormonat	66	
	8.7.4	Minimalwerte Vormonat	67	
	8.8	Setup Parameter	69	
	8.8.1	Datenstruktur Setpoints Digitaleingänge		
		(Register 6046, 6047 und 6048)	71	
	8.9	Ereignisspeicher (SOE-Log)	74	
	8.10	Zeiteinstellung	80	
	8.11	Steuerung der Ausgänge DOx	80	
	8.12	Information Universalmessgerät	81	
9.	Tech	nische Daten	83	
	9.1	Normen und Zulassungen	84	
	9.2	Bestellinformationen	85	
IN	INDEX 87			

1. Diese Dokumentation effektiv nutzen

1.1 Hinweise zur Benutzung

Dieses Bedienungshandbuch richtet sich an Installateure und Nutzer des Geräts und muss stets in unmittelbarer Nähe des Geräts aufbewahrt werden.

Um Ihnen das Verständnis und das Wiederfinden bestimmter Textstellen und Hinweise im Handbuch zu erleichtern, sind wichtige Hinweise und Informationen mit Symbolen gekennzeichnet. Die folgenden Beispiele erklären die Bedeutung dieser Symbole::

Diese Bedienungsanleitung wurde mit größtmöglicher Sorgfalt erstellt. Dennoch sind Fehler und Irrtümer nicht vollständig auszuschließen. Die Bender-Gesellschaften übernehmen keinerlei Haftung für Personen- oder Sachschäden, die sich aus Fehlern oder Irrtümern in dieser Bedienungsanleitung herleiten. Die eingetragenen Warenzeichen, die in diesem Dokument verwendet werden, sind Besitz der jeweiligen Firmen.

1.2 Technische Unterstützung: Service und Support

Für die Inbetriebnahme und Störungsbehebung bietet Bender an:

First Level Support

Technische Unterstützung telefonisch oder per E-Mail für alle Bender-Produkte

- Fragen zu speziellen Kundenapplikationen
- Inbetriebnahme
- Störungsbeseitigung

Telefon: +49 6401 807-760* Fax: +49 6401 807-259 nur in Deutschland: 0700BenderHelp (Telefon und Fax) E-Mail: support@bender-service.com

Repair Service

Reparatur-, Kalibrier-, Update- und Austauschservice für alle Bender-Produkte

- Reparatur, Kalibrierung, Überprüfung und Analyse von Bender-Produkten
- Hard- und Software-Update von Bender-Geräten
- Ersatzlieferung für defekte oder falsch gelieferte Bender-Geräte
- Verlängerung der Garantie von Bender-Geräten mit kostenlosem Reparaturservice im Werk bzw. kostenlosem Austauschgerät

Telefon: +49 6401 807-780** (technisch) / +49 6401 807-784**, -785** (kaufmännisch) Fax: +49 6401 807-789 E-Mail: repair@bender-service.com

Geräte für den Reparaturservice senden Sie bitte an folgende Adresse:

Bender GmbH, Repair-Service, Londorfer Strasse 65, 35305 Grünberg

Field Service

Vor-Ort-Service für alle Bender-Produkte

- Inbetriebnahme, Parametrierung, Wartung, Störungsbeseitigung für Benderprodukte
- Analyse der Gebäudeinstallation (Netzqualitäts-Check, EMV-Check, Thermografie)
- Praxisschulungen für Kunden

Telefon: +49 6401 807-752**, -762 **(technisch) / +49 6401 807-753** (kaufmännisch) Fax: +49 6401 807-759

E-Mail: fieldservice@bender-service.com Internet: www.bender-de.com

*365 Tage von 07:00 - 20:00 Uhr (MEZ/UTC +1) **Mo-Do 07:00 - 16:00 Uhr, Fr 07:00 - 13:00 Uhr

1.3 Schulungen

Bender bietet Ihnen gerne eine Einweisung in die Bedienung des Universalmessgeräts an.

Aktuelle Termine für Schulungen und Praxisseminare finden Sie im Internet unter http://www.bender-de.com -> Fachwissen -> Seminare.

1.4 Lieferbedingungen, Garantie, Gewährleistung und Haftung

Es gelten die Liefer- und Zahlungsbedingungen der Firma Bender.

Für Softwareprodukte gilt zusätzlich die vom ZVEI (Zentralverband Elektrotechnik- und Elektronikindustrie e. V.) herausgegebene "Softwareklausel zur Überlassung von Standard-Software als Teil von Lieferungen, Ergänzung und Änderung der Allgemeinen Lieferbedingungen für Erzeugnisse und Leistungen der Elektroindustrie".

Die Liefer- und Zahlungsbedingungen erhalten Sie gedruckt oder als Datei bei Bender.

2. Sicherheit

2.1 Bestimmungsgemäße Verwendung

Das Universalmessgerät PEM533 dient zur

- Analyse der Energie und Leistung (Power Analyzer)
- Überwachung der Spannungsversorgungs-Qualität (Power Quality)
- Erfassung relevanter Daten für das Energiemanagement (Energy Management).

Als Fronttafeleinbaugerät ist es geeignet, analoge Anzeigeinstrumente zu ersetzen. Das PEM533 ist in 2-, 3- und 4-Leiter-Netzen und in TN- , TT- und IT-Netzen einsetzbar. Die Strommesseingänge des PEM werden über externe

../1A- oder ../5A-Messstromwandler angeschlossen. Die Messung in Mittel- und Hochspannungsnetzen findet grundsätzlich über Messstrom- und Spannungswandler statt. Zur bestimmungsgemäßen Verwendung gehören:

- Anlagenspezifische Einstellungen gemäß den vor Ort vorhandenen Anlagen- und Einsatzbedingungen.
- Das Beachten aller Hinweise aus dem Handbuch.

2.2 Qualifiziertes Personal

Das Gerät darf **nur von Elektrofachkräften eingebaut** und in Betrieb genommen werden.

Eine Elektrofachkraft ist aufgrund ihrer fachlichen Ausbildung, Kenntnisse und Erfahrungen sowie Kenntnis der einschlägigen Normen in der Lage, Arbeiten an elektrischen Anlagen auszuführen und mögliche Gefahren selbstständig zu erkennen. Die Elektrofachkraft ist speziell für das Arbeitsumfeld ausgebildet, in dem sie tätig ist, und kennt relevante Normen und Bestimmungen. In Deutschland muss die Elektrofachkraft die Bestimmungen der Unfallverhütungsvorschrift BGV A3 erfüllen. In anderen Ländern gelten entsprechende Vorschriften.

2.3 Sicherheitshinweise allgemein

Bender-Geräte sind nach dem Stand der Technik und den anerkannten sicherheitstechnischen Regeln gebaut. Dennoch können bei deren Verwendung Gefahren für Leib und Leben des Benutzers oder Dritter bzw. Beeinträchtigungen an Bender-Geräten oder an

anderen Sachwerten entstehen.

Lebensgefahr durch elektrischen Strom!

Bei Berührung spannungsführender Teile besteht unmittelbare Lebensgefahr durch elektrischen Strom. Alle Arbeiten an elektrischen Anlagen sowie Arbeiten zum Einbau, zur Inbetriebnahme und Arbeiten während des Betriebs des Gerätes dürfen **nur durch Elektrofachkräfte** durchgeführt werden!

- Benutzen Sie Bender-Geräte nur:
 - für die bestimmungsgemäße Verwendung
 - im sicherheitstechnisch einwandfreien Zustand
 - unter Beachtung der f
 ür den Einsatzort geltenden Regeln und Vorschriften zur Unfallverh
 ütung
- Beseitigen Sie sofort alle Störungen, die die Sicherheit beeinträchtigen können.
- Nehmen Sie keine unzulässigen Veränderungen vor und verwenden Sie nur Ersatzteile und Zusatzeinrichtungen, die vom Hersteller der Geräte verkauft oder empfohlen werden. Wird dies nicht beachtet, so können Brände, elektrische Schläge und Verletzungen verursacht werden.
- Hinweisschilder müssen immer gut lesbar sein. Ersetzen Sie sofort beschädigte oder unlesbare Schilder.
- Wurde das Gerät durch Überspannung oder Führen von Kurzschlussstrom belastet, so muss es überprüft und gegebenenfalls ersetzt werden.
- Wird das Gerät außerhalb der Bundesrepublik Deutschland verwendet, sind die dort geltenden Normen und Regeln zu beachten.
 Eine Orientierung kann die europäische Norm EN 50110 bieten.

3. Gerätebeschreibung

3.1 Einsatzbereich

Elektrischer Strom ist für den Menschen nicht unmittelbar sichtbar. Universalmessgeräte zur Überwachung von elektrischen Größen kommen überall dort zum Einsatz, wo Energieverbräuche, Leistungsbedarfe oder die Qualität der Versorgungsspannung sichtbar gemacht werden sollen.

Das PEM533 eignet sich zur Überwachung

- von Erzeugungsanlagen (PV-Anlagen, BHKW, Wasserkraft, Windenergieanlagen)
- energieverbrauchsintensiver Betriebsmittel und Anlagenteile
- empfindlicher Betriebsmittel

3.2 Gerätemerkmale

Das Universalmessgerät PEM533 für Power Quality und Energiemanagement zeichnet sich durch folgende Merkmale aus:

- Genauigkeitsklasse nach IEC62053-22: 0,5S
- Passwortschutz
- 9 parametrierbare Setpoints
- LED-Pulsausgänge für Wirk- und Blindarbeit
- Modbus RTU Kommunikation über RS-485-Schnittstelle
- 6 digitale Eingänge
- 2 digitale Ausgänge
- Leistungs- und Strombedarfe für einstellbare Zeitfenster
- Spitzenbedarfe mit Zeitstempel
- Individuelle, harmonische Oberschwingungsanteile in Strom und Spannung bis zur 31. Oberschwingung
- Max- und Min-Werte
- Messgrößen
 - Strangspannungen U_{L1} , U_{L2} , U_{L3} in V
 - AußenleiterspannungenU_{L1L2}, U_{L2L3}, U_{L3L1} in V
 - Strangströmel₁, l₂, l₃ in A
 - Neutralleiterstrom (berechnet)/4 in A
 - Frequenzf in Hz
 - Phasenwinkelfür U und I in °

- Leistung per AußenleiterP in kW, Q in kvar, S in kVA
- Leistung gesamtP in kW, Q in kvar, S in kVA
- Verschiebungsfaktorcos (φ)
- Leistungsfaktorλ
- Wirk- und Blindenergiebezugin kWh, kvarh
- Wirk- und Blindenergieexportin kWh, kvarh
- Spannungsunsymmetriein %
- Stromunsymmetriein %
- Oberschwingungsverzerrung (THD, TOHD, TEHD)für *U* und *I*
- k-Faktorfür I

3.3 Versionen

3.3.1 PEM533

• Stromeingang 5 A

3.3.2 PEM533-251

• Stromeingang 1 A

3.4 Anwendungsbeispiel

Abb. 3.1: Anwendungsbeispiel

3.5 Funktionsbeschreibung

Mit dem digitalen Universalmessgerät PEM533 werden elektrische Größen eines Elektrizitätsversorgungsnetzes erfasst und angezeigt. Der Umfang der Messungen reicht von Strömen und Spannungen über Energieverbräuche und Leistungen bis hin zur Darstellung individueller harmonischer Anteile in Strom und Spannung zur Beurteilung der Spannungs- und Stromqualität.

Die Genauigkeit der Wirkverbrauchszählung entspricht der Klasse 0,5 S nach DIN EN 62053-22 (VDE 0418 Teil 3-22):2003-11.

Das große Display des Schalttafeleinbaugeräts erleichtert das einfache Ablesen rele-

vanter Messgrößen und erlaubt eine schnelle Konfiguration. Zusätzlich ermöglicht die RS485-Schnittstelle eine zentrale Auswertung und Verarbeitung der Daten. Über die digitalen Ein- und Ausgänge können Schaltvorgänge überwacht oder initiiert werden (Beispiel: Abschalten eines unkritischen Verbrauchers bei Überschreitung eines Spitzenlast-Schwellenwertes).

Das Universalmessgerät vom Typ PEM533 erfüllt folgende Funktionen:

- Bereitstellen von Energieverbrauchsdaten für ein durchdachtes Energiemanagement
- Kostenstellenspezifische Zuordnung von Energiekosten
- Überwachung der Netzqualität zur Kostensenkung und Erhöhung der Anlagenverfügbarkeit

3.6 Front- und Rückansicht

Abb. 3.2: Frontansicht (links) und Rückansicht (rechts) PEM533

4. Montage und Anschluss

4.1 Projektierung

Bei Fragen zur Projektierung wenden Sie sich an Fa. Bender: Internet: www.bender-de.com Telefon: +49-6401-807-0

4.2 Sicherheitshinweise

Nur Elektrofachkräfte dürfen das Gerät anschließen und in Betrieb nehmen. Das Personal sollte dieses Handbuch gelesen haben und muss alle Hinweise verstanden haben, die die Sicherheit betreffen.

4.3 Das Gerät montieren

4.3.1 Maßbilder

Abb. 4.1: Maßbild PEM533 (Frontansicht)

Abb. 4.2: Maßbild PEM533 (Seitenansicht)

Abb. 4.3: Maßbild PEM533 (Montageausschnitt)

4.3.2 Fronttafeleinbau

Das Gerät benötigt eine Einbauöffnung von 92 mm x 92 mm.

- 1. Setzen Sie das Gerät in die Einbauöffnung der Fronttafel.
- 2. Setzen Sie die beiden mitgelieferten Halteklammern von hinten in die Schienen des Geräts.
- 3. Schieben Sie die Klammern in Richtung Frontplatte und ziehen Sie die zugehörigen Feststellschrauben handfest an.
- 4. Kontrollieren Sie den festen Sitz des Geräts in der Fronttafel.

Das Gerät ist eingebaut.

4.4 Das Gerät anschließen

4.4.1 Sicherheitshinweise

4.4.2 Vorsicherungen Vorsicherungen Hilfsspannung: 6 A

Kurzschlussschutz: Sichern Sie die Messeingänge normenkonform ab (Empfehlung: 2 A). Sorgen Sie für eine geeignete Trennvorrichtung. Einzelheiten hierzu finden Sie in den Bedienungsanleitungen der verwendeten Messstromwandler.

Wenn die Hilfsspannung U_s aus einem **IT-Netz** gespeist wird, sind **beide Außenleiter abzusi-chern**.

4.4.3 Anschluss Messstromwandler

Berücksichtigen Sie beim Anschluss der Messstromwandler die Anforderungen der DIN VDE 0100-557 (VDE 0100-557) – Errichten von Niederspannungsanlagen - Teil 5: Auswahl und Errichtung elektrischer Betriebsmittel - Kapitel 557: Hilfsstromkreise.

4.5 Hinweise zum Anschluss

- Schließen Sie PEM533 an die Versorgungsspannung an (Klemmen A1 und A2 bzw. +/-). Verbinden Sie die Klemme " ⊥ " mit dem Schutzleiter.
- Absicherung zum Leitungsschutz 6A Flink. Bei Versorgung aus einem IT-System müssen beide Leitungen abgesichert werden.
- Der Anschluss an den RS485-Bus erfolgt über die Klemmen D+, D- und SH. An den Bus können bis zu 32 Geräte angeschlossen werden. Die maximale Leitungslänge für den Bus-Anschluss aller Geräte beträgt 1200 m.

4.6 Anschlussbild

Verdrahten Sie das Gerät gemäß Anschlussbild. Die Anschlüsse finden Sie auf der Rückseite des Geräts.

Abb. 4.4: Anschlussbild

Legende zum Anschlussschaltbild

1	Anschluss RS-485-Bus
2	Versorgungsspannung. Absicherung zum Leitungsschutz 6 A Flink. Bei Versorgung aus einem IT-System müssen beide Leitungen abgesichert werden.
3	Digitaleingänge
4	Digitalausgänge (Schließerkontakte)
5	Messspannungseingänge: Die Messleitungen sollten mit geeigneten Vorsicherungen versehen werden.
6	Anschluss des zu überwachenden Systems

4.7 Anschlussschemata Spannungseingänge

4.7.1 Dreiphasen-4-Leitersysteme (TN-, TT-, IT-Systeme)

Das Universalmessgerät PEM533 kann in Dreiphasen-4-Leiternetzen unabhängig von der Netzform (TN-, TT-, IT-System) eingesetzt werden.

Abb. 4.5: Anschlussschema Dreiphasen-4-Leiternetz (Beispiel TN-S-System)

4.7.2 Dreiphasen-3-Leitersystem

Das Universalmessgerät PEM533 kann in Dreiphasen-3-Leiternetzen eingesetzt werden. Die Außenleiterspannung darf maximal 400 V AC betragen.

4.7.3 Anschluss über Spannungswandler

Die Ankopplung über Messspannungswandler ermöglicht den Einsatz des Messgeräts in Mittel- und Hochspannungsanlagen. Das Übersetzungsverhältnis im PEM533 ist einstellbar (1...2200).

über Spannungswandler

4.8 Digitale Eingänge

Das Universalmessgerät PEM533 bietet 6 digitale Eingänge. Die Eingänge werden durch eine galvanisch getrennte Spannung von 24 V DC gespeist. Durch äußere Beschaltung muss mindestens ein Strom von $I_{min} > 2,4$ mA fließen, um ein Ansprechen der Eingänge zu erreichen.

4.9 Digitale Ausgänge

Das Universalmessgerät PEM533 verfügt über 2 konfigurierbare Ausgänge (Schließer).

Bemessungs- betriebsspannung	AC 230 V	DC 24 V	AC 110 V	DC 12 V
Bemessungs- betriebsstrom	5 A	5 A	6 A	5 A

5. Inbetriebnahme

5.1 Ordnungsgemäßen Anschluss prüfen

Beachten Sie für Einbau und Anschluss die geltenden Normen und Vorschriften sowie die Bedienungsanleitungen der Geräte.

5.2 Vor dem Einschalten

Beachten Sie folgende Fragen vor dem Einschalten:

- 1. Stimmt die Versorgungsspannung mit den Angaben auf den Typenschildern der Geräte überein?
- 2. Wird die Nennisolationsspannung der Messstromwandler nicht überschritten?
- 3. Stimmt der Maximalstrom des Messstromwandlers mit den Angaben auf dem Typenschild des angeschlossenen Geräts überein?

5.3 Einschalten

Nach dem Einschalten führen Sie folgende Arbeitsschritte durch:

- 1. Versorgungsspannung zuschalten.
- 2. Busadresse/IP-Adresse einstellen.
- 3. Messstromwandler-Übersetzungsverhältnis einstellen (für jeden Kanal).
- 4. Bei Bedarf Messstromwandler-Zählrichtung ändern.
- 5. Nominalspannung einstellen.
- 6. Stern- oder Dreieck-Schaltung wählen.

5.4 System

Das Universalmessgerät PEM533 kann über Modbus-RTU sowohl parametriert als auch abgefragt werden. Näheres hierzu findet sich in "Kapitel 8. Modbus Register Übersicht" sowie im Internet www.modbus.org.

Außerdem ist die Einbindung in das Bender-eigene Busprotokoll BMS-Bus (Bender Messgeräte Schnittstelle) über zusätzliche Kommunikationsmodule möglich. So wird die Kommunikation mit (bereits vorhandenen) Bender-Geräten zur Geräteparametrierung und zur Visualisierung der Messwerte und Alarme erreicht.

Hilfe und Beispiele zur Systemintegration finden Sie auf der Bender- Homepage www.bender-de.com sowie in der persönlichen Beratung durch den Bender-Service (siehe "Kapitel 1.2 Technische Unterstützung: Service und Support").

6. Bedienen

6.1 Bedienelemente kennenlernen

Abb. 6.1: Bedienelemente

Legende der Bedienelemente

Nr.	Element	Beschreibung	
1	LED kWh	Pulsausgang siehe LED-Anzeige" auf Seite 29	
2	LED kvarh	i uisausgang, siene "LED Anzeige auf seite 25	
3	LC-Display		
4	Taster "V/I" <	Mittel- und Gesamtwerte (Strom, Spannung) anzeigen im Menü: bei Zahlenwerten: Cursor eine Stelle nach links setzen	
5	Taster "POWER" A	Leistungsbezogene Messgrößen anzeigen im Menü: Wechsel einen Eintrag nach oben bei Zahlenwerten: Erhöhen des Wertes	
6	Taster "HARMONICS" V	Oberschwingungen anzeigen im Menü: einen Eintrag nach unten bei Zahlenwerten: Wert senken	

	> 3 s drücken: Wechsel zwischen Setup-Menü und Standard-Anzeige
Taster	Messwerte anzeigen: Wirk- und Blindenergiebezug / Wirk- und Blindenergie-
"ENERGY"	export (Zeile 5)
OK	im Menü: Auswahl des zu bearbeitenden Parameters
	Bestätigen der Eingabe
	Taster "ENERGY" OK

6.2 Test LC-Display

Drücken der Taster "POWER" und "HARMONICS" gleichzeitig für > 2 Sekunden testet das LC-Display. Während des Tests werden alle LCD-Segmente dreimal hintereinander für je eine Sekunde ein- und wieder ausgeschaltet. Nach dem Testdurchlauf kehrt das Gerät selbsttätig in den Standardanzeigemodus zurück.

Abb. 6.2: Display bei LCD-Test

6.3 Standarddisplayanzeigen kennenlernen

Im Display können fünf verschiedene Anzeigebereiche unterschieden werden.

Abb. 6.3: Anzeigebereiche

Legende der Anzeigebereiche

-	
1	Zeigt die Status für den Zustand der digitalen Ein- und Ausgänge (DI Status, DO Status),
2	Messwerte
3	Oberschwingungsverzerrung (Harmonic Distortion HD), Unsymmetrie (unb), Quadrant, Maßeinheiten
4	Zeigt Energie-Informationen wie Wirkenergie (Bezug, Export, Netto- und Gesamtenergie in kWh), Blindenergie (Bezug, Export, Netto- und Gesamtenergie in kvarh), Scheinenergie (kVAh)
5	Zeigt Parameter für Spannung, Strom, Grundschwingung, Leistung, Gesamt-Oberschwingungsverzerrungen THD, TOHD, TEHD (231. Harmonische), k-Faktor, Unsymmetrie (unb), Phasenwinkel für Spannungen und Ströme, Bedarfe

Beschreibung de	r Standarddispla	yanzeigen (Bere	iche1, 3 und 4)
-----------------	------------------	-----------------	-----------------

Bereich	Segmente	Symbolbeschreibung			
1		O DI offen		• _{DI}	geschlossen
	• +/-	⊣⊢ _{DO offen}		-/- DC	geschlossen
3		V, kV, A, %, H Maßeinheiten fü THD, f	Hz rr <i>U, I,</i>	kW, M kVA, M Maßein	W, kvar, MVA heiten für <i>P, Q, S</i>
	- A % kvarMvar	% Skala für Stror	n	 induktiv	∽_ ┥┝_ ı, kapazitiv
		C1 Status Kommu- nikations- schnittstelle	اللہ اللہ میں اللہ میں میں اللہ میں ال	ımbol	Q2 Q3 Quadrant
4	ABCD TOT MP NET EXP	IMP kWh Bezug Wirk- energie	EXP k Export V energie	Wh Wirk-	NET kWh Netto Wirk- energie
	S S S S S S S S S S S S S S S S S S S	TOT kWh Gesamt-Wirk- energie	IMP k Bezug B energie	varh Blind-	EXP kvarh Export Blind- energie
		NET kvar Netto Blind- energie	TOT k Gesamt energie	varh -Blind-	KVAh Scheinenergie

Abb. 6.4: Standarddisplayanzeigen

6.4 Leistungs- und Strombedarfe (Demand Display)

Die Bedarfe werden nach folgendem Schema im Display dargestellt:

Abb. 6.5: Display Spitzenbedarf

- 1 Wert Spitzenbedarf
- 2 Zeitstempel Spitzenbedarf (Datum): JJJJ.MM.TT
- 3 Zeitstempel Spitzenbedarf (Uhrzeit): hh:mm:ss
- 4 Anzeige Bedarfe:

ranzeige bedante.	
I ₁ :	/ ₁
I ₂ :	<i>I</i> ₂
I ₃ :	<i>I</i> ₃
P :	Wirkleistungsbedarf P
q:	Blindleistungsbedarf Q,
S :	Scheinleistungsbedarf
DMD:	Bedarf (Demand)
MAX	Maximum
TM:	Aktueller Monat (this month)
LM:	Vormonat (last month)

6.5 LED-Anzeige

Das Universalmessgerät hat zwei rote LEDs auf der Frontseite: kWh und kvarh. Diese werden zur kWh- und kvar-Anzeige verwendet, wenn die Funktion EN PULSE aktiviert ist. Dies kann im Setup-Menü mit den Tastern auf der Vorderseite oder über die Kommunikationsschnittstelle eingestellt werden.

Die LEDs blinken jedesmal auf, sobald eine bestimmte Energiemenge (1 kWh bzw. 1 kvarh) umgesetzt wurde.

Die angezeigte Energiemenge entspricht der durch das Messgerät umgesetzten Energiemenge. Um die tatsächliche Energiemenge zu ermitteln, ist die Blinkfrequenz mit den Wandlerverhältnissen und der Pulskonstanten zu errechnen.

6.6 Standardanzeige

Das Universalmessgerät zeigt automatisch die Standardanzeige, wenn im Setupmodus drei Minuten lang keine Aktivität über die Taster erfolgt ist.

Abb. 6.6: Standardanzeige

6.7 Datenanzeige

Die Anzeige der Messdaten erfolgt über die vier Taster "V/I", "POWER", "HARMONICS" und "ENERGY". Die folgenden Tabellen zeigen, wie die einzelnen Werte abgerufen werden können.

6.7.1 Taster "V/I"

Spalte links	Spalte rechts	Erste Zeile	Zweite Zeile	Dritte Zeile	Vierte Zeile
тот	V A W	ØU	ØI	P _{ges}	Leistungs-faktor λ
U ₁ U ₂ U ₃ U _{AVG}	V	U _{L1}	U _{L2}	U _{L3}	Ø U _{LL}
U ₁₋₂ U ₂₋₃ U ₃₋₁ U _{AVG}	V	U _{L1L2}	U _{L2L3}	U _{L3L1}	Ø U _{LN}
I ₁ I ₂ I ₃ I _{AVG}	A	Ι ₁	l ₂	I ₃	ØI
I ₄	А		I ₄		
F	Hz			f	
U unb	%		Unsymme- trie U		
l unb	%		Unsymme- trie I		
U ₁ PA U ₂ U ₃		Phasen- winkel U _{L1}	Phasen- winkel U _{L2}	Phasen- winkel U _{L3}	
PA I ₂ I ₃		Phasen- winkel / ₁	Phasen- winkel I ₂	Phasen- winkel I ₃	
I1 DMD I ₂ I ₃ I _{AVG}	A	Bedarf I ₁	Bedarf I ₂	Bedarf I ₃	Ø Bedarf I
I ₁ DMD MAX TM	A	Spitzenbe- darf I ₁ aktueller Monat	JJJJ.MM.TT hh:mm:ss		
I ₂ DMD MAX TM	A	Spitzenbe- darf I ₂ aktueller Monat	JJJJ.MM.TT hh:mm:ss		

Spalte links	Spalte rechts	Erste Zeile	Zweite Zeile	Dritte Zeile	Vierte Zeile
I ₃ DMD MAX TM	A	Spitzenbe- darf I ₃ aktueller Monat	JJJJ.MM.TT hh:mm:ss		nm:ss
I ₁ DMD MAX LM	A	Spitzenbe- darf I ₁ Vor- monat	JJJJ.MM.TT hh:mm:ss		
I ₂ DMD MAX LM	A	Spitzenbe- darf I ₂ Vor- monat	JJJJ.MM.TT hh:mm:ss		nm:ss
I ₃ DMD MAX LM	A	Spitzenbe- darf / ₃ Vor- monat	וווו	.MM.TT hh:m	nm:ss

Tab. 6.1: Anzeigemöglichkeiten über Taster "V/I"

6.7.2 Taster "POWER"

Spalte links	Spalte rechts	Erste Zeile	Zweite Zeile	Dritte Zeile	Vierte Zeile
* P ₁ P ₂ P ₃ P _{TOT}	kW kW kW	P _{L1} *	P _{L2} *	P _{L3} *	P _{ges}
*q ₁ q ₂ q ₃ q _{TOT}	var var var	<i>Q</i> _{L1} *	<i>Q</i> _{L2} *	<i>Q</i> _{L3} *	Q _{ges}
*S ₁ S ₂ S ₃ S _{TOT}	kVA kVA kVA	S _{L1} *	S _{L2} *	S _{L3} *	S _{ges}
PF ₁ PF ₂ PF ₃ PF _{TOT}		λ_{L1}^{}	λ_{L2}^{*}	λ_{L3}^{*}	λ_{ges}
*dPF1 dPF2 dPF3 dTOT		Verschiebungs faktor cos (φ) _{L1} *	Verschiebungs- faktor cos (φ) _{L2} *	Verschiebungs- faktor cos (ϕ) _{L3} *	
тот	W var VA	P _{ges}	Q _{ges}	S _{ges}	λ_{ges}
DMD	W var VA	Bedarf P	Bedarf Q	Bedarf S	Bedarf λ
P DMD MAX TM		Spitzenbedarf P aktueller Monat	JJJJ.MM.TT hh:mm:ss		
Q DMD MAX TM	var	Spitzenbedarf <i>Q</i> aktueller Monat	JJJJ.MM.TT hh:mm:ss		
S DMD MAX TM	VA	Spitzenbedarf S aktueller Monat	JJJJ.MM.TT hh:mm:ss		

Spalte links	Spalte rechts	Erste Zeile	Zweite Zeile	Dritte Zeile	Vierte Zeile	
P DMD MAX LM	w	Spitzenbedarf <i>P</i> Vormonat	WITT	JJJJ.MM.TT hh:mm:ss		
Q DMD MAX LM	var	Spitzenbedarf Q Vormonat	JJJJ.MM.TT hh:mm:ss			
S DMD MAX LM	VA	Spitzenbedarf S Vormonat	WITT	M.TT hh:mm:ss		

Tab. 6.2: Anzeigemöglichkeiten über Taster "POWER"

Anmerkung:

Bei Modus "Dreieckschaltung" wird die Anzeige übersprungen.

6.7.3 Taster "HARMONICS"

Spalte links	Spalte rechts	Erste Zeile	Zweite Zeile	Dritte Zeile	Vierte Zeile
THD U ₁ U ₂ U ₃ U _{AVG}	%	THD _{UL1}	THD _{UL2}	THD _{UL3}	Ø THD _{ULN}
THD I ₁ I ₂ I ₃ I _{AVG}	%	THD _{I1}	THD ₁₂	THD ₁₃	Ø THD _I
L 1 2 3		k-Faktor I ₁	k-Faktor I ₂	k-Faktor I ₃	
U THD Even	%	TEHD _{UL1}	TEHD _{UL2}	TEHD _{UL3}	Ø TEHD _{ULN}
l THD EVEN		TEHD _{I1}	TEHD ₁₂	TEHD _{I3}	Ø TEHD _I

Spalte links	Spalte rechts	Erste Zeile	Zweite Zeile	Dritte Zeile	Vierte Zeile
U THD ODD		TOHD _{UL1}	TOHD _{UL2}	TOHD _{UL3}	Ø TOHD _{ULN}
I THD ODD		TOHD _{I1}	TOHD ₁₂	TOHD ₁₃	Ø TOHD _I
HD2 U ₁ U ₂ U ₃ U _{AVG}	%	2. Harmo- nische U _{L1}	2. Harmo- nische U _{L2}	2. Harmo- nische U _{L3}	Ø 2. Harmo- nische U _{LN}
HD2 I ₁ I ₂ I ₃ I _{AVG}	%	2. Harmo- nische I ₁	2. Harmo- nische I ₂	2. Harmo- nische I ₃	Ø 2. Harmo- nische /
HD3 U1 U2 U3 UAVG	%	3. Harmo- nische U _{L1}	3. Harmo- nische U _{L2}	3. Harmo- nische U _{L3}	Ø 3. Harmo- nische U _{LN}
HD31 U ₁ U ₂ U ₃ U _{AVG}	%	31. Harmo- nische U _{L1}	31. Harmo- nische U _{L2}	31. Harmo- nische U _{L3}	Ø 31. Har- monische U _{LN}
HD31 I ₁ I ₂ I ₃ I _{AVG}	%	31. Harmo- nische I ₁	31. Harmo- nische I ₂	31. Harmo- nische I ₃	Ø 31. Ober- schwingung I

Tab. 6.3: Anzeigemöglichkeiten über Taster "HARMONICS"

6.7.4 Taster "ENERGY"

Schaltet durch die Anzeigen der fünften Zeile:

Spalte links	Spalte rechts	Wert
IMP	kWh	Wirkenergiebezug
EXP	kWh	Wirkenergieexport
NET	kWh	Netto-Wirkenergie
TOT	kWh	Gesamt-Wirkenergie
IMP	kvarh	Blindenergiebezug
EXP	kvarh	Blindenergieexport
NET	kvarh	Netto-Blindenergie
TOT	kvarh	Gesamt-Blindenergie
S	kVAh	Scheinenergie

Tab. 6.4: Anzeigemöglichkeiten über Taster "ENERGY"

6.8 Setup über Taster am Gerät

Um in den Setupmodus zu gelangen, drücken Sie den Taster "ENERGY" (> 3 s). Die Rückkehr in den Anzeigemodus erfolgt ebenfalls über den Taster "ENERGY" (> 3 s).

Zum Verändern von Parametern müssen Sie zuerst das **Passwort eingeben**. (Werkseinstellung: 0)

6.8.1 Setup: Bedeutung der Taster

Die Bedeutungen der Taster im Setupmodus stehen unter den Tastern auf der Frontseite:

"**V** / **I**"Pfeiltaste " \leq ": setzt den Cursor bei numerischen Werten eine Stelle nach links "**POWER**"Pfeiltaste " \land " : Wechsel im Menü nach oben bzw. Erhöhen eines Zahlenwertes

"HARMONICS"Pfeiltaste " V": Wechsel im Menü nach unten bzw. Senken eines Zahlwertes.

"ENERGY"Entertaste: Bestätigung der Eingabe

6.8.2 Setup: Übersichtsdiagramm Menü

Das folgende Diagramm erleichtert Ihnen die Orientierung in den Menüs:

Abb. 6.7: Setup: Einstellmöglichkeiten

6.9 Setup: Einstellmöglichkeiten

Die Tabelle stellt die im Display angezeigten Meldungen, deren Bedeutung und die Einstellmöglichkeiten dar.

Display-Eintrag Ebene 1 Ebene 2	Parameter	Beschreibung	Einstell- möglich- keiten	Werks- ein- stellung
PROGRAMMING	Setup-Modus	; ;		
PASWORD	Passwort	Passwort eingeben	/	0
PAS SET		Passwort ändern?	YES / NO	NO
NEW PAS	neues Pass- wort	neues Passwort angeben	000099999	0
SYS SET	Systemeinste	llungen	YES/NO	NO
TYPE	Anschlussart	Anschlussart wählen	WYE/DELTA/ DEMO	WYE
PT	Spannungs- wandler	Übersetzungsverhältnis Span- nungswandler wählen	12200	1
СТ	Messstrom- wandler	Übersetzungsverhältnis Mess- stromwandler wählen	130.000 (1A) 1 6.000 (5A)	1
PF SET	Leistungs- faktor-Regel	Leistungsfaktor-Regel *	IEC/IEEE/-IEEE	IEC
KVA SET		S-Berechnungsmethode **	V/S	V
I1 REV	I ₁ CT	I1 Messstromwandler Polarität ändern	YES/NO	NO
I2 REV	I ₂ CT	<i>l</i> ₂ Messstromwandler Polarität ändern	YES/NO	NO
I3 REV	I ₃ CT	<i>l</i> ₃ Messstromwandler Polarität ändern	YES/NO	NO
COM 1 SET	Kommunikat	ionsschnittstelle konfigurieren	YES/NO	NO
ID	Adresse Messgerät	Adresse Messgerät setzen	1-247	100
BAUD	Baudrate	Baudrate setzen	1200/2400/ 4800/9600/ 19200 bps	9600
CONFIG	Paritätbit	Konfiguration Paritätbit	8N2/8O1/8E1/ 8N1/8O2/8E2	8E1
DMD SET	Bedarfsmessu	Bedarfsmessung ein / aus		NO
PERIOD	Länge Mess- zeitraum	Messzeitraum für Bedarfsmes- sung einstellen	1, 2, 3, 5, 10, 15, 30, 60 (Minuten)	15
NUM	Anzahl Messzeit- räume für Sliding Window	Anzahl Sliding Windows einstellen	115	1
PULS SET	Pulsausgang	einstellen	YES/NO	NO

Display-Eintrag Ebene 1	Parameter	Beschreibung	Einstell- möglich-	Werks- ein-
Ebene 2			keiten	stellung
EN PULSE	Energy Pulsing	kWh und kvar Energy pulsing aktivieren	YES/NO	NO
EN CONST	Puls- konstante	Anzahl der LED-Pulse je Energie- menge	1К	1K
ENGY SET	Voreinstellun	g Energiewerte	YES/NO	NO
IMP kWh	Wirkenergie- bezug	Voreinstellung Wirkenergiebe- zug	0 999.999.999	0
EXP kWh	Wirkenergie- export	Voreinstellung Wirkenergieex- port	0 999.999.999	0
IMP kvarh	Blind- energie- bezug	Voreinstellung Blindenergiebe- zug	0 999.999.999	0
EXP kvarh	Blind- energie- export	Voreinstellung Blindenergieex- port	0 999.999.999	0
S kVAh	Schein- energie	Voreinstellung Scheinenergie	0 999.999.999	0
DO SET	Triggermodu	Triggermodus digitale Ausgänge ändern		NO
DO1	Betriebsart DO1	Betriebsart DO1 einstellen	NORMAL/ON/ OFF	NORMAL
DO2	Betriebsart DO2	Betriebsart DO2 einstellen	NORMAL/ON/ OFF	NORMAL
CLR SET	Speicher lösc	hen	YES/NO	NO
CLR ENGY	Löschen Energie- werte	kWh, kvar und kVAh löschen	YES/NO	NO
CLR MXMN	Löschen Max- und Minwerte	Löschen Max- und Minwerte aktueller Monat	YES/NO	NO
CLR PDMD	Löschen Spitzenbe- darf	Löschen Werte Spitzenbedarf aktueller Monat	YES/NO	NO
CLR DIC	Löschen Pulszähler		YES/NO	NO
CLR SOE	Löschen Ereignisspei- cher	Löschen Ereignisspeicher	YES/NO	NO
DAT	Datum	aktuelles Datum einstellen	YY-MM-DD	/
CLK	Uhrzeit	aktuelle Uhrzeit einstellen	HH:MM:SS	/
BLTO SET	Displaybe- leuchtung	Zeitdauer, bis Display dunkel	059 (Minuten)	3

Display-Eintrag Ebene 1 Ebene 2	Parameter	Beschreibung	Einstell- möglich- keiten	Werks- ein- stellung
INFO	Geräte- Informatio- nen	nur lesen	YES/NO	NO
SW-VER	Software Version		/	/
PRO VER	Protokoll Version	50 bedeutet V5.0	/	/
UPDAT	Datum Soft- ware- Update	TIMMIT	/	/
	Serien- nummer	Seriennummer Gerät	/	/

Tab. 6.5: Einstellmöglichkeiten Setup

Anmerkungen zur obigen Tabelle

*Leistungsfaktor λ Regeln

"IEEE" und "-IEEE" unterscheiden sich lediglich durch vertauschte Vorzeichen.

**Es gibt zwei verschiedene Arten zur Berechnung der Scheinleistung S:

Vektormethode V:

Skalarmethode S:

_ c

$$S_{\text{ges}} = -\sqrt{P_{\text{ges}}^2 + Q_{\text{ges}}^2}$$

$$S_{ges} = S_{L1} + S_{L2} + S_{L3}$$

. .

Die Art der Berechnung ist wählbar: V = Vektormethode S = Skalarmethode

6.10 Konfigurationsbeispiel: Einstellung Messstromwandler

Verhältnis 1000:5 (=200)

Taster	Anzeige Display	Beschreibung
ENERGY > 3 s	PROGRAMMING	
^	PASWORD ****	
OK (oder Passwort)	PASWORD 0	0 blinkt
OK	PASWORD 0	0 ist Werkseinstellung
^	PAS SET NO	
^	SYS SET NO	
OK	SYS SET NO	NO blinkt
$\Lambda_{ m oder}$ V	SYS SET YES	YES blinkt
OK	SYS SET YES	
^	TYPE WYE	Werkseinstellung
^	PT 1	Werkseinstellung
^	CT 1	Werkseinstellung
OK	CT 1	1 blinkt (Einerstelle)
\vee	CTERR 0	0 blinkt (Einerstelle)
<	CTERR 00	linke 0 blinkt (Zehnerstelle)
<	CTERR 0 0	linke 0 blinkt (Hunderterstelle)
	CT 200	2 blinkt
OK	CT 200	CT-Verhältnis 200 eingestellt
OK > 3 s	Standardanzeige	

7. Anwendung / Ein- und Ausgänge

7.1 Digitale Eingänge

Das Gerät bietet sechs digitale Eingänge, die intern mit 24 V DC betrieben werden. Digitale Eingänge werden in der Regel zur Überwachung externer Zustände verwendet. Die Schaltzustände der digitalen Eingänge können im LC-Display oder an angeschlossenen Systemkomponenten abgelesen werden. Änderungen externer Zustände werden im Ereignisspeicher (SOE-Log) als Ereignisse mit einer Auflösung von 1 ms gespeichert.

7.2 Digitale Ausgänge

Das Gerät bietet zwei digitale Ausgänge. Digitale Ausgänge werden in der Regel als Alarm beim Auslösen von Setpoints, zur Laststeuerung oder für ferngesteuerte Anwendungen eingesetzt.

Beispiele:

- 1. Bedienung über Tasten auf der Vorderseite (siehe "Setup über Taster am Gerät" auf Seite 36
- 2. Bedienung über Kommunikationsschnittstelle
- 3. Steuer-Setpoints: Ansteuerung bei Sollwert-Überschreitung (siehe "Steuer-Setpoints" auf Seite 47
- 4. Steuerung über digitale Eingänge

7.3 Anzeige Energy Pulsing

Die beiden LED-Pulsausgänge werden für kWh- und kvarh-Anzeige verwendet, wenn die Funktion EN PULSE aktiviert ist. Dies kann im Setup-Menü mit den Tastern auf der Vorderseite oder über die Kommunikationsschnittstelle eingestellt werden.

Die LEDs blinken jedesmal auf, sobald eine bestimmte Energiemenge (1 kWh bzw. 1 kvarh) umgesetzt wurde.

7.4 Leistung und Energie

7.4.1 Phasenwinkel von Spannung und Strom

Die Phasenwinkel-Analyse dient zur Bestimmung des Winkels wischen den Spannungen und Strömen der drei Außenleiter.

7.4.2 Energie

Zu den Basis-Energieparametern zählen

- Wirkenergie (Bezug, Export, Netto- und Gesamtenergie in kWh)
- Blindenergie (Bezug, Export, Netto- und Gesamtenergie in kvarh)
- Scheinenergie (S_{ges} in kVAh)

Der maximal anzeigbare Wert ist \pm 999.999.999.999. Ist der Maximalwert erreicht, springt das Register wieder auf 0. Der Zählerwert ist über Software und die Taster auf der Frontseite passwortgeschützt editierbar.

7.4.3 Bedarf (Demand DMD)

Der Bedarf ist definiert als durchschnittlicher Verbrauchswert in einem festgelegten Messzeitraum. Es werden Werte ermittelt für

- Spannungen(U₁, U₂, U₃, ØU_{LN}, U_{L1L2}, U_{L2L3}, U_{L3L1}, ØU_{LL})
- Ströme (*I*₁, *I*₂, *I*₃, Ø *I*)
- Wirkleistung P (P₁, P₂, P₃, ØP)
- Scheinleistung S (S₁, S₂, S₃, ØS)
- Blindleistung $Q(Q_1, Q_2, Q_3, \emptyset Q)$
- Leistungsfaktor λ (λ_1 , λ_2 , λ_3 , $\emptyset\lambda$)
- Frequenz
- Spannungsunsymmetrie
- Stromunsymmetrie
- Gesamt-Oberschwingungsverzerrung Spannung (THD_{U1}, THD_{U2}, THD_{U3})
- Gesamt-Oberschwingungsverzerrung Strom (THD₁₁, THD₁₂, THD₁₃)

Die **Dauer des Messzeitraums** ist einstellbar über die Taster auf der Frontseite oder über die Kommunikationsschnittstelle. Folgende Werte stehen zur Auswahl:

1, 2, 3, 5, 10, 15, 30, 60 Minuten

Neben der Dauer ist auch die Anzahl der Messzeiträume (**Sliding Window**) zwischen 1 und 15 festzulegen.

Während des Gesamtmesszeitraums (Dauer multipliziert mit der Anzahl) wird der Verbrauch bzw. die importierte Leistung gemessen. Anschließend wird der **Mittelwert auf dem Display als Bedarf angezeigt** und über die Kommunikationsschnittstelle ausgegeben.

Der während des gesamten Aufzeichnungszeitraums ermittelte Maximalwert des Bedarfs (**Spitzenbedarf**/peak demand) wird gespeichert und angezeigt. Der Spitzenbedarf kann manuell zurückgesetzt werden.

Für Einstellmöglichkeiten siehe "Setup: Einstellmöglichkeiten" auf Seite 38 ff.

7.5 Setpoints

Das Gerät unterstützt zwei verschiedene Arten von Setpoints:

- 1. Steuer-Setpoints für allgemeine Anwendungen der Steuerung und Alarmierung
- 2. Setpoints der digitalen Ein- und Ausgänge: Änderungen bei den digitalen Eingängen bewirken Aktionen des digitalen Ausgangs.

7.5.1 Steuer-Setpoints

Das Gerät hat 9 vom Benutzer frei programmierbare Steuer-Setpoints, die eine umfassende Steuerung der Reaktion auf festgelegte Ereignisse bieten. Das Alarmsymbol $\ll \leq$ in der unteren Zeile des LC-Displays erscheint, wenn es erreichte/aktive Setpoints gibt. Setpoints werden über die **Kommunikationsschnittstelle** programmiert. Es gibt folgende **Setup-Parameter:**

1. **Setpoint-Art:** legt die Art der Ermittlung fest (Wertüberschreitung oder Wertunterschreitung) oder ist deaktiviert.

2. Setpointparameter

Schlüssel	Parameter	Faktor; Einheit
0	—	_
1	U _{LN}	x 100; V
2	U _{LL}	x 100; V
3	1	x 1000; A
4	P _{ges}	x 1.000; kW
5	Q _{ges}	x 1.000; kvar
6	λ_{ges}	x 1.000
7	THDU	x 10.000
8	THDI	x 10.000
9	TEHDU	x 10.000
10	TEHDI	x 10.000
11	TOHDU	x 10.000
12	TOHD	x 10.000
13	Bedarf P _{ges}	x 1.000; kW
14	Bedarf Q _{ges}	x 1.000; kvar
15	Bedarf S	x 1.000; kVA
16	Ø Bedarf I	x 1.000; A

Tab. 7.1: Setpointparameter

- Setpointgrenze (active limit): Legt die oberen Grenzen (bei Wertüberschreitung) bzw. unteren Grenzen (bei Wertunterschreitung) fest, bei deren Verletzung der Setpoint aktiv wird (Ansprechschwellenwert).
- Setpointgrenze (inactive limit): Legt die *unteren* (bei Wertüberschreitung) bzw. *oberen* (bei Wert*unter*schreitung) Grenzen fest, bei deren Verletzung der Setpoint inaktiv wird, z. B. Rückkehr in den Normalzustand (Rückfallschwellenwert).

- 5. Ansprechverzögerung: Legt die minimale Zeitspanne fest, die ein Wert den Schwellenwert verletzt haben muss, um eine Aktion auszulösen. Jede Statusänderung eines Setpoints generiert einen Eintrag im Ereignisspeicher. Die Angabe der Ansprechverzögerung erfolgt in Sekunden und kann einen Wert zwischen 0 und 9.999 Sekunden einnehmen.
- 6. **Rückfallverzögerung**: Legt die minimale Zeitspanne fest, die ein Wert die Bedingungen für die Rückkehr in den Normalzustand erfüllt haben muss. Jede Statusänderung eines Setpoints generiert einen Eintrag im Ereignisspeicher. Die Angabe der Rückfallverzögerung erfolgt in Sekunden und kann einen Wert zwischen 0 und 9.999 Sekunden einnehmen.
- 7. Setpoint Trigger: Legt fest, welche Aktion der Setpoint beim Erreichen auslöst. Diese Aktion schließt "No Trigger" und " Trigger DOx" mit ein.

7.5.2 Setpoints der digitalen Ein- und Ausgänge (DI-Setpoint)

Jeder der sechs digitalen Eingänge kann über Setpoints so programmiert werden, dass er einen digitalen Ausgang ansteuert. Die Setpoints für die digitalen Eingänge werden benutzt, um externe Zustände zu überwachen und bei einer Wertverletzung eine Alarm- und Steuerungsreaktion auszulösen. Die Programmierung erfolgt über die Taster an der Frontseite und /oder über die Kommunikationsschnittstelle.

Ein digitaler Ausgang kann einen oder beide digitalen Ausgänge ansteuern. Folgende Ereignisse werden im Ereignisspeicher gespeichert:

- Statusänderung des digitalen Ausgangs (Öffnen oder Schließen)
- Digitaler Eingangskanal triggert die Aktion des Ausgangs
- Der digitale Ausgang wird vom digitalen Eingang geschaltet

7.6 Speicher

7.6.1 Speicher Spitzenbedarf (Peak demand)

PEM533 speichert den Spitzenbedarf des Vormonats und des aktuellen Monats für *I*₁, *I*₂, *I*₃, *P*_{ges}, *Q*_{ges} und *S*_{ges} mit Zeitstempel. Die Werte können über die Taster an der Frontseite sowie über die Kommunikationsschnittstelle abgerufen werden.

7.6.2 Speicher Max- und Min-Werte

PEM533 speichert jeden neuen Maximal- und Minimalwert für den aktuellen Monat und den Vormonat. Eine Übersicht über die gespeicherten Werte bietet die folgende Tabelle.

Aktueller Monat		Vormonat		
Maximalwerte	Minimalwerte	Maximalwerte	Minimalwerte	
U _{L1 max}	U _{L1 min}	U _{L1 max}	U _{L1 min}	
U _{L2 max}	U _{L2 min}	U _{L2 max}	U _{L2 min}	
U _{L3 max}	U _{L3 min}	U _{L3 max}	U _{L3 min}	
Ø U _{LN max}	Ø U _{LN min}	Ø U _{LN max}	Ø U _{LN min}	
U _{L1L2 max}	U _{L1L2 min}	U _{L1L2 max}	U _{L1L2 min}	
U _{L2L3 max}	U _{L2L3 min}	U _{L2L3 max}	U _{L2L3 min}	
U _{L3L1 max}	U _{L3L1 min}	U _{L3L1 max}	U _{L3L1 min}	
Ø U _{LL max}	Ø U _{LL min}	Ø U _{LL max}	Ø U _{LL min}	
I _{1 max}	/ _{1 min}	I _{1 max}	l _{1 min}	
l _{2 max}	l _{2 min}	l _{2 max}	l _{2 min}	
I _{3 max}	I _{3 min}	I _{3 max}	I _{3 min}	
ØI _{max}	ØI _{min}	ØI _{max}	ØI _{min}	
P _{L1 max}	P _{L1 min}	P _{L1 max}	P _{L1 min}	
P _{L2 max}	P _{L2 min}	P _{L2 max}	P _{L2 min}	
P _{L3 max}	P _{L3 min}	P _{L3 max}	P _{L3 min}	
P _{ges max}	P _{ges min}	P _{ges max}	P _{ges min}	
Q _{L1 max}	Q _{L1 min}	Q _{L1 max}	Q _{L1 min}	
Q _{L2 max}	Q _{L2 min}	Q _{L2 max}	Q _{L2 min}	
Q _{L3 max}	Q _{L3 min}	Q _{L3 max}	Q _{L3 min}	
Q _{ges max}	Q _{ges min}	Q _{ges max}	Q _{ges min}	
S _{L1 max}	S _{L1 min}	S _{L1 max}	S _{L1 min}	
S _{L2 max}	S _{L2 min}	S _{L2 max}	S _{L2 min}	
S _{L3 max}	S _{L3 min}	S _{L3 max}	S _{L3 min}	
S _{ges max}	S _{ges min}	S _{ges max}	S _{ges min}	
$\lambda_{1 max}$	$\lambda_{1 \min}$	$\lambda_{1 max}$	$\lambda_{1 \min}$	
$\lambda_{2 max}$	$\lambda_{2 \min}$	$\lambda_{2 max}$	$\lambda_{2 \min}$	
λ _{3 max}	λ _{3 min}	λ _{3 max}	λ _{3 min}	
$\lambda_{ges max}$	$\lambda_{ges min}$	$\lambda_{ges max}$	$\lambda_{ges\ min}$	
f _{max}	f _{min}	f _{max}	f _{min}	
max. Spannungs- unsymmetrie	min. Spannungs- unsymmetrie	max. Spannungs- unsymmetrie	min. Spannungs- unsymmetrie	

Aktueller Monat		Vormonat		
Maximalwerte	Minimalwerte	Maximalwerte	Minimalwerte	
max. Stromun- symmetrie	min. Stromun- symmetrie	max. Stromun- symmetrie	min. Stromun- symmetrie	
THD U _{L1 max}	THD U _{L1 min}	THD U _{L1 max}	THD U _{L1 min}	
THD U _{L2 max}	THD U _{L2 min}	THD U _{L2 max}	THD U _{L2 min}	
THD U _{L3 max}	THD U _{L3 min}	THD U _{L3 max}	THD U _{L3 min}	
THD / _{1 max}	THD / _{1 min}	THD / _{1 max}	THD I _{1 min}	
THD I _{2 max}	THD I _{2 min}	THD I _{2 max}	THD I _{2 min}	
THD I _{3 max}	THD I _{3 min}	THD I _{3 max}	THD I _{3 min}	

Tab. 7.2: Messwerte in Max-/Minspeicher für den aktuellen Monat und den Vormonat

7.6.3 Ereignisspeicher (SOE-Log)

Das Gerät kann bis zu 64 Ereignisse speichern. Die Speicherung erfolgt nach dem FIFO-Prinzip (first in, first out): Das 65. Ereignis überschreibt den ersten Eintrag, der 66. den zweiten usw.

Ereignisse können sein:

- Ausfall Versorgungsspannung
- Änderung des Setpointsstatus
- Relaisaktionen
- Änderungen des Status der digitalen Eingänge
- Setupänderungen

Jeder Ereigniseintrag enthält die Ereignis-Klassifizierung, die relevanten Parameterwerte und einen Zeitstempel mit einer Auflösung von 1 ms.

Alle Ereigniseinträge können über die Kommunikationsschnittstelle abgerufen werden. Der Ereignisspeicher kann sowohl über die Taster auf der Frontseite als auch über die Kommunikationsschnittstelle gelöscht werden.

7.7 Power Quality

7.7.1 Harmonische Verzerrung

Das Gerät bietet eine Analyse

- Gesamt-Oberschwingungsverzerrung (THD)
- geradzahlige Gesamt-Oberschwingungsverzerrung (TEHD)
- ungeradzahlige Gesamt-Oberschwingungsverzerrung (TOHD)
- k-Faktor

• aller harmonischen Oberschwingungen bis zur 31. Ordnung

Die Auswertung der harmonischen Anteile erfolgt, sofern ein Strom von mindestens 150 mA (Stromeingang 1 A) bzw. 750 mA (Stromeingang 5 A) fließt.

Alle Parameter können im Display abgelesen werden und stehen über die Kommunikationsschnittstelle zur Verfügung.

Folgende Parameter werden unterstützt:

	L1	L2	L3
	THD	THD	THD
Harmonische	TEHD	TEHD	TEHD
Oberschwin-	TOHD	TOHD	TOHD
gungen Spappung	2. Harmonische	2. Harmonische	2. Harmonische
Spannang			
	31. Harmonische	31. Harmonische	31. Harmonische
	THD	THD	THD
Harmonische	TEHD	TEHD	TEHD
	TOHD	TOHD	TOHD
Oberschwin-	k-Faktor	k-Faktor	k-Faktor
Strom	2. Harmonische	2. Harmonische	2. Harmonische
	31. Harmonische	31. Harmonische	31. Harmonische

7.7.2 Unsymmetrie

Das Gerät kann Spannungs- und Stromunsymmetrien bestimmen. Folgende Berechnungsmethode wird angewandt:

Spannungs-
unsymmetrie =
$$\frac{[|U_{L1} - \emptyset U|, |U_{L2} - \emptyset U|, |U_{L3} - \emptyset U|]_{max}}{\emptyset U} \times 100\%$$
Strom-
unsymmetrie =
$$\frac{[|I_1 - \emptyset I|, |I_2 - \emptyset I|, |I_3 - \emptyset I|]_{max}}{\emptyset I} \times 100\%$$
Hinweis: Ø bezeichnet den Durchschnittswert (average)

8. Modbus Register Übersicht

Dieses Kapitel bietet eine vollständige Beschreibung der Modbus-Register (Protokoll-Version 6.0) für die PEM533-Serie, um den Zugriff auf Informationen zu erleichtern. In der Regel werden die Register als Modbus-Nur-Lese-Register (RO = read only) implementiert. Eine Ausnahme bilden die DO-Steuerregister, die nur schreibende Funktion haben (WO = write only).

PEM533 unterstützt folgende Modbusfunktionen:

- 1. Halteregister zum Auslesen von Werten (Read Holding Register; Funktionscode 0x03)
- 2. Register zum Setzen von DO-Status (Force Single Coil; Funktionscode 0x05)
- 3. Register zur Geräteprogrammierung (Preset Multiple Registers; Funktionscode 0x10)

Für eine komplette Modbus-Protokoll-Spezifikation besuchen Sie http://www.modbus.org.

Register	Eigen- schaft	Beschreibung	Format	Skalierung/ Einheit
0000	RO	U _{L1} ¹⁾	UINT32	×100, V ⁽²
0002	RO	U _{L2} ¹⁾	UINT32	×100, V
0004	RO	U _{L3} ¹⁾	UINT32	×100, V
0006	RO	Ø U _{LN}	UINT32	×100, V
0008	RO	U _{L1L2}	UINT32	×100, V
0010	RO	U _{L2L3}	UINT32	×100, V
0012	RO	U _{L3L1}	UINT32	×100, V
0014	RO	Ø U _{LL}	UINT32	×100, V
0016	RO	<i>I</i> ₁	UINT32	×1000, A
0018	RO	12	UINT32	×1000, A
0020	RO	13	UINT32	×1000, A
0022	RO	ØI	UINT32	×1000, A
0024	RO	P _{L1} ¹⁾	INT32	×1000, kW

8.1 Basis-Messwerte

Register	Eigen- schaft	Beschreibung	Format	Skalierung/ Einheit
0026	RO	P _{L2} ¹⁾	INT32	×1000, kW
0028	RO	P _{L3} ¹⁾	INT32	×1000, kW
0030	RO	P _{ges}	INT32	×1000, kW
0032	RO	Q _{L1} ¹⁾	INT32	×1000, kvar
0034	RO	Q _{L2} ¹⁾	INT32	×1000, kvar
0036	RO	Q _{L3} ¹⁾	INT32	×1000, kvar
0038	RO	Q _{ges}	INT32	×1000, kvar
0040	RO	S _{L1} ¹⁾	INT32	×1000, kVA
0042	RO	S _{L2} ¹⁾	INT32	×1000, kVA
0044	RO	S _{L3} ¹⁾	INT32	×1000, kVA
0046	RO	S _{ges}	INT32	×1000, kVA
0048	RO	$\lambda_{L1}^{1)}$	INT16	×1000, -
0049	RO	$\lambda_{L2}^{1)}$	INT16	×1000, -
0050	RO	$\lambda_{L3}^{1)}$	INT16	×1000, -
0051	RO	λ_{ges}	INT16	×1000, -
0052	RO	f	UINT16	×100, Hz
0053	RO	<i>I</i> ₄	UINT32	x1000, A
00550064	Reserviert			
0065	RO	Unsymmetrie Spannung	UINT16	x1000
0066	RO	Unsymmetrie Strom	UINT16	x1000
0067	RO	Verschiebungsfaktor L1	INT16	x1000
0068	RO	Verschiebungsfaktor L2	INT16	x1000
0069	RO	Verschiebungsfaktor L3	INT16	x1000
0070	RO	Phasenwinkel U _{L1}	UINT16	x100, °
0071	RO	Phasenwinkel U _{L2}	UINT16	x100, °
0072	RO	Phasenwinkel U _{L3}	UINT16	x100, °
0073	RO	Phasenwinkel I ₁	UINT16	x100, °
0074	RO	Phasenwinkel I ₂	UINT16	x100, °
0075	RO	Phasenwinkel I ₃	UINT16	x100, °
00760079		Reserviert		
0080	RO	Status digitale Eingänge ³⁾	UINT16	

Register	Eigen- schaft	Beschreibung	Format	Skalierung/ Einheit
0081	RO	Status digitale Ausgänge ⁴⁾	UINT16	
0082	RO	Alarm ⁵⁾	UINT16	
0083	RO	SOE Pointer ⁶⁾	UINT32	
00850119	Reserviert			

Tab. 8.1	: Basis-Me	esswerte
----------	------------	----------

Hinweise:

- 1) Nur bei Verwendung einer Sternschaltung (WYE).
- 2) "x 100, V" bedeutet, dass der gelieferte Spannungswert des Registers 100-mal größer ist als der Messwert (der Wert des Registers muss also durch 100 geteilt werden, um den Messwert zu erhalten).
- 3) Statusregister 0080: Stellt den Status der sechs digitalen Eingänge dar B0...B5 für DI1...DI6 (1 = aktiv/geschlossen; 0 = inaktiv/geöffnet) 4)

Statusregister 0081:

Stellt den Status der beiden digitalen Ausgänge dar

B0 für DO1 (1 = aktiv/geschlossen; 0 = inaktiv/geöffnet)

B1 für DO2 (1 = aktiv/geschlossen; 0 = inaktiv/geöffnet)

5) Das Alarmregister 0082 zeigt die verschiedenen Alarmzustände an (1 = aktiv, 0 = inaktiv). Die Tabelle 8.2 auf Seite 55 stellt Details des Alarmregisters dar.

Bit in Register 0082	Alarm durch Ereignis
B0B2	Reserviert
B3	Setpoint 1
B4	Setpoint 2
B5	Setpoint 3
B6	Setpoint 4
B7	Setpoint 5
B8	Setpoint 6
B9	Setpoint 7
B10	Setpoint 8
B11	Setpoint 9
alle anderen Bits	Reserviert

Tab. 8.2: Bitfolge Alarmregister (0082)

⁶⁾ Der SOE Pointer zeigt auf den letzten hinzugefügten Eintrag. Der Ereignisspeicher kann bis zu 64 Ereignisse speichern. Er funktioniert wie ein Ringpuffer nach dem FIFO-Prinzip: das 65. Ereignis überschreibt den ersten Wert, das 66. den zweiten und so weiter. Ein Reset des Ereignisspeichers kann in den Setup-Parametern (siehe Seite 40) vorgenommen werden.

8.2 Energie-Messung

Register	Eigenschaft	Beschreibung	Format	Einheit
0200	RW	Wirkenergie- bezug	UINT32	kWh
0202	RW	Wirkenergie- export	UINT32	kWh
0204	RO	Netto- Wirkenergie	INT32	kWh
0206	RO	Wirkenergie gesamt	UINT32	kWh
0208	RW	Blindenergie- bezug	UINT32	kvarh
0210	RW	Blindenergie- export	UINT32	kvarh
0212	RO	Netto- Blindenergie	INT32	kvarh
0214	RO	Blindenergie gesamt	UINT32	kvarh
0216	RW	Scheinenergie	UINT32	kVAh

Tab. 8.3: Energie-Messung

Hinweis: Nach Erreichen des Maximalwerts von 999.999.999 kWh/kvarh/kVAh beginnt die Messung wieder bei 0.

8.3 Oberschwingungs-Messung

Register	Eigenschaft	Beschreibung	Format	Einheit
0400 0402		Reserviert		
0403	RO	k-Faktor / ₁	UINT16	x10
0404	RO	k-Faktor I ₂	UINT16	x10
0405	RO	k-Faktor I ₃	UINT16	x10
0406	RO	TEHD _{UL1}	UINT16	x10.000
0407	RO	TEHD _{UL2}	UINT16	x10.000
0408	RO	TEHD _{UL3}	UINT16	x10.000
0409	RO	TEHD _{I1}	UINT16	x10.000
0410	RO	TEHD ₁₂	UINT16	x10.000
0411	RO	TEHD ₁₃	UINT16	x10.000
0412	RO	TOHD _{UL1}	UINT16	x10.000
0413	RO	TOHD _{UL2}	UINT16	x10.000
0414	RO	TOHD _{UL3}	UINT16	x10.000
0415	RO	TOHD _{I1}	UINT16	x10.000
0416	RO	TOHD ₁₂	UINT16	x10.000
0417	RO	TOHD ₁₃	UINT16	x10.000
0418	RO	THD _{UL1}	UINT16	x10.000
0419	RO	THD _{UL2}	UINT16	x10.000
0420	RO	THD _{UL3}	UINT16	x10.000
0421	RO	THD _{I1}	UINT16	x10.000
0422	RO	THD _{I2}	UINT16	x10.000
0423	RO	THD _{I3}	UINT16	x10.000
0424	RO	U _{L1} 2. Harmonische	UINT16	x10.000
0425	RO	U _{L2} 2. Harmonische	UINT16	x10.000
0426	RO	U _{L3} 2. Harmonische	UINT16	x10.000
0427	RO	I ₁ 2. Harmonische	UINT16	x10.000
0428	RO	l ₂ 2. Harmonische	UINT16	x10.000
0429	RO	<i>I</i> ₃ 2. Harmonische	UINT16	x10.000
	RO		UINT16	x10.000
0598	RO	U _{L1} 31. Harmonische	UINT16	x10.000
0599	RO	U _{L2} 31. Harmonische	UINT16	x10.000

Register	Eigenschaft	Beschreibung	Format	Einheit
0600	RO	U _{L3} 31. Harmonische	UINT16	x10.000
0601	RO	I ₁ 31. Harmonische	UINT16	x10.000
0602	RO	I ₂ 31. Harmonische	UINT16	x10.000
0603	RO	<i>I</i> ₃ 31. Harmonische	UINT16	x10.000

Tab. 8.4: Oberschwingungs-Messung

8.4 Bedarf

Register	Eigenschaft	Beschreibung	Format	Einheit
1000	RO	Bedarf U _{L1}	INT32	x100, V
1002	RO	Bedarf U _{L2}	INT32	x100, V
1004	RO	Bedarf U _{L3}	INT32	x100, V
1006	RO	Ø Bedarf U _{LN}	INT32	x100, V
1008	RO	Bedarf U _{L1L2}	INT32	x100, V
1010	RO	Bedarf U _{L2L3}	INT32	x100, V
1012	RO	Bedarf U _{L3L1}	INT32	x100, V
1014	RO	Ø Bedarf U _{LL}	INT32	x100, V
1016	RO	Bedarf I ₁	INT32	x1000, A
1018	RO	Bedarf I ₂	INT32	x1000, A
1020	RO	Bedarf I ₃	INT32	x1000, A
1022	RO	Ø Bedarf I	INT32	x1000, A
1024	RO	Bedarf P _{L1}	INT32	x1000, kW
1026	RO	Bedarf P _{L2}	INT32	x1000, kW
1028	RO	Bedarf P _{L3}	INT32	x1000, kW
1030	RO	Bedarf P _{ges}	INT32	x1000, kW
1032	RO	Bedarf Q _{L1}	INT32	x1000, kvar
1034	RO	Bedarf Q _{L2}	INT32	x1000, kvar
1036	RO	Bedarf Q _{L3}	INT32	x1000, kvar
1038	RO	Bedarf Q _{ges}	INT32	x1000, kvar
1040	RO	Bedarf S _{L1}	INT32	x1000, kVA
1042	RO	Bedarf S _{L2}	INT32	x1000, kVA
1044	RO	Bedarf S _{L3}	INT32	x1000, kVA
1046	RO	Bedarf S _{ges}	INT32	x1000, kVA

Register	Eigenschaft	Beschreibung	Format	Einheit
1048	RO	Bedarf λ_1	INT32	x1000
1050	RO	Bedarf λ_2	INT32	x1000
1052	RO	Bedarf λ_3	INT32	x1000
1054	RO	Bedarf λ_{ges}	INT32	x1000
1056	RO	Bedarf f	INT32	x100, Hz
1058	RO	Bedarf Spannungsunsymmetrie	INT32	x1000
1060	RO	Bedarf Stromunsymmetrie	INT32	x1000
1062	RO	Bedarf THD _{UL1}	INT32	x10.000
1064	RO	Bedarf THD _{UL2}	INT32	x10.000
1066	RO	Bedarf THD _{UL3}	INT32	x10.000
1068	RO	Bedarf THD _{I1}	INT32	x10.000
1070	RO	Bedarf THD ₁₂	INT32	x10.000
1072	RO	Bedarf THD ₁₃	INT32	x10.000

Tab. 8.5: Register Bedarfe

8.5 Extremwerte während Bedarfsmessungszeitfenster

8.5.1 Maximalwerte Bedarf

Register	Eigenschaft	Beschreibung	Format	Einheit
1400	RO	U _{L1 max}	INT32	x100, V
1402	RO	U _{L2 max}	INT32	x100, V
1404	RO	U _{L3 max}	INT32	x100, V
1406	RO	Ø U _{LN max}	INT32	x100, V
1408	RO	U _{L1L2 max}	INT32	x100, V
1410	RO	U _{L2L3 max}	INT32	x100, V
1412	RO	U _{L3L1 max}	INT32	x100, V
1414	RO	Ø U _{LL max}	INT32	x100, V
1416	RO	I _{1 max}	INT32	x1000, A
1418	RO	l _{2 max}	INT32	x1000, A
1420	RO	I _{3 max}	INT32	x1000, A
1422	RO	ØI _{max}	INT32	x1000, A
1424	RO	P _{L1 max}	INT32	x1000, kW

Register	Eigenschaft	Beschreibung	Format	Einheit
1426	RO	P _{L2 max}	INT32	x1000, kW
1428	RO	P _{L3 max}	INT32	x1000, kW
1430	RO	P _{ges max}	INT32	x1000, kW
1432	RO	Q _{L1 max}	INT32	x1000, kvar
1434	RO	Q _{L2 max}	INT32	x1000, kvar
1436	RO	Q _{L3 max}	INT32	x1000, kvar
1438	RO	Q _{ges max}	INT32	x1000, kvar
1440	RO	S _{L1 max}	INT32	x1000, kVA
1442	RO	S _{L2 max}	INT32	x1000, kVA
1444	RO	S _{L3 max}	INT32	x1000, kVA
1446	RO	S _{ges max}	INT32	x1000, kVA
1448	RO	λ _{1 max}	INT32	x1000
1450	RO	$\lambda_{2 max}$	INT32	x1000
1452	RO	$\lambda_{3 max}$	INT32	x1000
1454	RO	$\lambda_{ges\ max}$	INT32	x1000
1456	RO	f _{max}	INT32	x100, Hz
1458	RO	max. Spannungsun- symmetrie	INT32	x1000
1460	RO	max. Stromunsymme- trie	INT32	x1000
1462	RO	THD _{UL1 max}	INT32	x10.000
1464	RO	THD _{UL2 max}	INT32	x10.000
1466	RO	THD _{UL3 max}	INT32	x10.000
1468	RO	THD _{I1 max}	INT32	x10.000
1470	RO	THD _{I2 max}	INT32	x10.000
1472	RO	THD _{I3 max}	INT32	x10.000

Abb. 8.1: Maximalwerte in Zeitfenster zur Bedarfsmessung

8.5.2 Minimalwerte Bedarf

Register	Eigenschaft	Beschreibung	Format	Einheit
1600	RO	U _{L1 min}	INT32	x100, V
1602	RO	U _{L2 min}	INT32	x100, V
1604	RO	U _{L3 min}	INT32	x100, V
1606	RO	Ø U _{LN min}	INT32	x100, V
1608	RO	U _{L1L2 min}	INT32	x100, V
1610	RO	U _{L2L3 min}	INT32	x100, V
1612	RO	U _{L3L1 min}	INT32	x100, V
1614	RO	Ø U _{LL min}	INT32	x100, V
1616	RO	I _{1 min}	INT32	x1000, A
1618	RO	I _{2 min}	INT32	x1000, A
1620	RO	I _{3 min}	INT32	x1000, A
1622	RO	ØI _{min}	INT32	x1000, A
1624	RO	P _{L1 min}	INT32	x1000, kW
1626	RO	P _{L2 min}	INT32	x1000, kW
1628	RO	P _{L3 min}	INT32	x1000, kW
1630	RO	P _{ges min}	INT32	x1000, kW
1632	RO	Q _{L1 min}	INT32	x1000, kvar
1634	RO	Q _{L2 min}	INT32	x1000, kvar
1636	RO	Q _{L3 min}	INT32	x1000, kvar
1638	RO	Q _{ges min}	INT32	x1000, kvar
1640	RO	S _{L1 min}	INT32	x1000, kVA
1642	RO	S _{L2 min}	INT32	x1000, kVA
1644	RO	S _{L3 min}	INT32	x1000, kVA
1646	RO	S _{ges min}	INT32	x1000, kVA
1648	RO	λ _{1 min}	INT32	x1000
1650	RO	$\lambda_{2 \min}$	INT32	x1000
1652	RO	λ _{3 min}	INT32	x1000
1654	RO	λ_{gesmin}	INT32	x1000
1656	RO	f _{min}	INT32	x100, Hz
1658	RO	min. Spannungsunsymmetrie	INT32	x1000
1660	RO	min. Stromunsymmetrie	INT32	x1000

Register	Eigenschaft	Beschreibung	Format	Einheit
1662	RO	THD _{UL1 min}	INT32	x10.000
1664	RO	THD _{UL2 min}	INT32	x10.000
1666	RO	THD _{UL3 min}	INT32	x10.000
1668	RO	THD _{I1 min}	INT32	x10.000
1670	RO	THD _{12 min}	INT32	x10.000
1672	RO	THD _{I3 min}	INT32	x10.000

Tab. 8.6: Minimalwerte im Zeitfenster der Bedarfsmessung

8.6 Spitzenbedarf

Der Wert des Spitzenbedarf-Registers ist der aktuelle Wert x1.000, d. h. um den Wert in kW, kVA oder kvar zu erhalten, muss der Wert des Registers durch 1000 geteilt werden.

8.6.1 Spitzenbedarf Aktueller Monat

Register	Eigen- schaft	Beschreibung	Format	
18001804	RO	Spitzenbedarf <i>P</i> in diesem Monat		x1000, kW
18051809	RO	Spitzenbedarf Q in diesem Monat	1	x1000, kvar
18101814	RO	Spitzenbedarf S in diesem Monat	siehe Tabelle	x1000, kVA
18151819	RO	Spitzenbedarf I ₁ in diesem Monat	8.9 auf	x1000, A
18201824	RO	Spitzenbedarf I ₂ in diesem Monat	Selle 05	x1000, A
18251829	RO	Spitzenbedarf I ₃ in diesem Monat		x1000, A

Tab. 8.7: Spitzenbedarf im aktuellen Monat

8.6.2 Spitzenbedarf Vormonat

Register	Eigen- schaft	Beschreibung	Format	
18501854	RO	Spitzenbedarf P im Vormonat		x1000, kW
18551859	RO	Spitzenbedarf Q im Vormonat		x1000, kvar
18601864	RO	Spitzenbedarf S im Vormonat	siene Tabelle	x1000, kVA
18651869	RO	Spitzenbedarf I ₁ im Vormonat	8.9 auf	x1000, A
18701874	RO	Spitzenbedarf I ₂ im Vormonat	Selle 05	x1000, A
18751879	RO	Spitzenbedarf I ₃ im Vormonat		x1000, A

Tab. 8.8: Spitzenbedarf im Vormonat

Datenstruktur Spitzenbedarf

Offset	Eigenschaft	Beschreibung	Format	Bemerkung
+ 0	RO	Spitzenbedarf Wert	INT32	
+ 2	RO	HiWord: Jahr	UINT16	199 (Jahr-2000)
	RO	LoWord: Monat		112
± 3	RO HiWord: Tag	LIINT16	128/29/30/31	
+ 5 -	RO	LoWord: Stunde		023
+ 4	RO	HiWord: Minute	LIINT16	059
	RO	LoWord: Sekunde		059

Tab. 8.9: Datenstruktur Spitzenbedarf

8.7 Speicher Maximal-/Minimalwerte (Max/Min-Log)

8.7.1 Maximalwerte aktueller Monat

Register	Eigenschaft	Beschreibung	Format	
20002004	RO	U _{L1 max}		x100, V
20052009	RO	U _{L2 max}		x100, V
20102014	RO	U _{L3 max}		x100, V
20152019	RO	Ø U _{LN max}		x100, V
20202024	RO	U _{L1L2 max}		x100, V
20252029	RO	U _{L2L3 max}		x100, V
20302034	RO	U _{L3L1 max}		x100, V
20352039	RO	Ø U _{LL max}		x100, V
20402044	RO	I _{1 max}	siehe	x1000, A
20452049	RO	l _{2 max}	Tabelle 8. 14 auf	x1000, A
20502054	RO	I _{3 max}	Seite 69	x1000, A
20552059	RO	ØI _{max}		x1000, A
20602064	RO	P _{L1 max}		x1000, kW
20652069	RO	P _{L2 max}		x1000, kW
20702074	RO	P _{L3 max}		x1000, kW
20752079	RO	P _{ges max}		x1000, kW
20802084	RO	Q _{L1 max}		x1000, kvar
20852089	RO	Q _{L2 max}		x1000, kvar
20902095	RO	Q _{L3 max}		x1000, kvar

Register	Eigenschaft	Beschreibung	Format	
20962099	RO	Q _{ges max}		x1000, kvar
21002104	RO	S _{L1 max}		x1000, kVA
21052109	RO	S _{L2 max}		x1000, kVA
21102114	RO	S _{L3 max}		x1000, kVA
21152119	RO	S _{ges max}		x1000, kVA
21202124	RO	$\lambda_{1 \max}$		x1000
21252129	RO	$\lambda_{2 max}$		x1000
21302134	RO	λ _{3 max}		x1000
21352139	RO	$\lambda_{ges max}$	siehe	x1000
21402144	RO	f _{max}	Tabelle 8. 14 auf	x100, Hz
21452149	RO	max. Spannungs- unsymmetrie	Seite 69	x1000
21502154	RO	max. Strom- unsymmetrie		x1000
21552159	RO	THD _{UL1 max}		x10.000
21602164	RO	THD _{UL2 max}		x10.000
21652169	RO	THD _{UL3 max}		x10.000
21702174	RO	THD _{I1 max}		x10.000
21752179	RO	THD _{I2 max}		x10.000
21802184	RO	THD _{I3 max}		x10.000

Tab. 8.10: Speicher Maximalwerte aktueller Monat

8.7.2 Minimalwerte aktueller Monat

Register	Eigenschaft	Beschreibung	Format	
23002304	RO	U _{L1 min}		x100, V
23052309	RO	U _{L2 min}		x100, V
23102314	RO	U _{L3 min}	ai a haa	x100, V
23152319	RO	Ø U _{LN min}	Tabelle 8.	x100, V
23202324	RO	U _{L1L2 min}	14 auf Seite 69	x100, V
23252329	RO	U _{L2L3 min}		x100, V
23302334	RO	U _{L3L1 min}		x100, V
23352339	RO	Ø U _{LL min}		x100, V

Register	Eigenschaft	Beschreibung	Format	
23402344	RO	I _{1 min}		x1000, A
23452349	RO	I _{2 min}		x1000, A
23502354	RO	I _{3 min}	-	x1000, A
23552359	RO	ØI _{min}		x1000, A
23602364	RO	P _{L1 min}		x1000, kW
23652369	RO	P _{L2 min}		x1000, kW
23702374	RO	P _{L3 min}		x1000, kW
23752379	RO	P _{ges min}		x1000, kW
23802384	RO	Q _{L1 min}		x1000, kvar
23852389	RO	Q _{L2 min}		x1000, kvar
23902395	RO	Q _{L3 min}		x1000, kvar
23962399	RO	Q _{ges min}		x1000, kvar
24002404	RO	S _{L1 min}		x1000, kVA
24052409	RO	S _{L2 min}	siehe Tabelle 8.	x1000, kVA
24102414	RO	S _{L3 min}		x1000, kVA
24152419	RO	S _{ges min}	14 auf Seite 69	x1000, kVA
24202424	RO	$\lambda_{1 \min}$		x1000
24252429	RO	$\lambda_{2 \min}$		x1000
24302434	RO	$\lambda_{3 min}$		x1000
24352439	RO	λ_{gesmin}		x1000
24402444	RO	f _{min}		x100, Hz
24452449	RO	min. Spannungs- unsymmetrie		x1000
24502454	RO	min. Stromun- symmetrie	-	x1000
24552459	RO	THD _{UL1 min}		x10.000
24602464	RO	THD _{UL2 min}		x10.000
24652469	RO	THD _{UL3 min}		x10.000
24702474	RO	THD _{I1 min}		x10.000
24752479	RO	THD _{I2 min}	1	x10.000
24802484	RO	THD _{I3 min}	1	x10.000

Tab. 8.11: Speicher Minimalwerte aktueller Monat

8.7.3 Maximalwerte Vormonat

Register	Eigen- schaft	Beschreibung	Format	
26002604	RO	U _{L1 max}		x100, V
26052609	RO	U _{L2 max}		x100, V
26102614	RO	U _{L3 max}		x100, V
26152619	RO	Ø U _{LN max}		x100, V
26202624	RO	U _{L1L2 max}		x100, V
26252629	RO	U _{L2L3 max}		x100, V
26302634	RO	U _{L3L1 max}		x100, V
26352639	RO	Ø U _{LL max}		x100, V
26402644	RO	I _{1 max}		x1000, A
26452649	RO	l _{2 max}		x1000, A
26502654	RO	I _{3 max}		x1000, A
26552659	RO	ØI _{max}		x1000, A
26602664	RO	P _{L1 max}		x1000, kW
26652669	RO	P _{L2 max}	siene Tabelle 8.14	x1000, kW
26702674	RO	P _{L3 max}	auf Seite 69	x1000, kW
26752679	RO	P _{ges max}		x1000, kW
26802684	RO	Q _{L1 max}		x1000, kvar
26852689	RO	Q _{L2 max}		x1000, kvar
26902695	RO	Q _{L3 max}		x1000, kvar
26962699	RO	Q _{ges max}		x1000, kvar
27002704	RO	S _{L1 max}		x1000, kVA
27052709	RO	S _{L2 max}		x1000, kVA
27102714	RO	S _{L3 max}		x1000, kVA
27152719	RO	S _{ges max}		x1000, kVA
27202724	RO	$\lambda_{1 max}$		x1000
27252729	RO	$\lambda_{2 \max}$		x1000
27302734	RO	$\lambda_{3 max}$	1	x1000
27352739	RO	$\lambda_{ges max}$		x1000

Register	Eigen- schaft	Beschreibung	Format	
27402744	RO	f _{max}		x100, Hz
27452749	RO	max. Spannungs- unsymmetrie	siehe	x1000
27502754	RO	max. Stromun- symmetrie		x1000
27552759	RO	THD _{UL1 max}		x10.000
27602764	RO	THD _{UL2 max}	auf Seite 69	x10.000
27652769	RO	THD _{UL3 max}		x10.000
27702774	RO	THD _{I1 max}		x10.000
27752779	RO	THD _{I2 max}		x10.000
27802784	RO	THD _{I3 max}		x10.000

Tab. 8.12: Speicher Maximalwerte Vormonat

8.7.4 Minimalwerte Vormonat

Register	Eigen- schaft	Beschreibung	Format	
29002904	RO	U _{L1 min}		x100, V
29052909	RO	U _{L2 min}		x100, V
29102914	RO	U _{L3 min}		x100, V
29152919	RO	Ø U _{LN min}		x100, V
29202924	RO	U _{L1L2 min}		x100, V
29252929	RO	U _{L2L3 min}		x100, V
29302934	RO	U _{L3L1 min}		x100, V
29352939	RO	Ø U _{LL min}	Tabelle 8.	x100, V
29402944	RO	I _{1 min}	14 auf Seite 69	x1000, A
29452949	RO	l _{2 min}		x1000, A
29502954	RO	I _{3 min}		x1000, A
29552959	RO	ØI _{min}		x1000, A
29602964	RO	P _{L1 min}		x1000, kW
29652969	RO	P _{L2 min}		x1000, kW
29702974	RO	P _{L3 min}		x1000, kW
29752979	RO	P _{ges min}]	x1000, kW

Register	Eigen- schaft	Beschreibung	Format	
29802984	RO	Q _{L1 min}	-	x1000, kvar
29852989	RO	Q _{L2 min}		x1000, kvar
29902995	RO	Q _{L3 min}		x1000, kvar
29962999	RO	Q _{ges min}		x1000, kvar
30003004	RO	S _{L1 min}		x1000, kVA
30053009	RO	S _{L2 min}		x1000, kVA
30103014	RO	S _{L3 min}		x1000, kVA
30153019	RO	S _{ges min}		x1000, kVA
30203024	RO	$\lambda_{1 \min}$	siehe Tabelle 8.	x1000
30253029	RO	$\lambda_{2 \min}$		x1000
30303034	RO	$\lambda_{3 \min}$		x1000
30353039	RO	$\lambda_{ges\ min}$	14 auf Seite 69	x1000
30403044	RO	f _{min}		x100, Hz
30453049	RO	min. Spannungs- unsymmetrie		x1000
30503054	RO	min. Stromun- symmetrie		x1000
30553059	RO	THD _{UL1 min}		x10.000
30603064	RO	THD _{UL2 min}	-	x10.000
30653069	RO	THD _{UL3 min}		x10.000
30703074	RO	THD _{I1 min}		x10.000
30753079	RO	THD _{I2 min}		x10.000
30803084	RO	THD _{I3 min}		x10.000

Tab. 8.13: Speicher Minimalwerte Vormonat

Offset	Eigenschaft	Beschreibung	Format	Bemerkung
+ 0	RO	Max- bzw. Min-Wert	INT32	
+ 2	RO	HiWord: Jahr	UINT16	199 (Jahr-2000)
	RO	LoWord: Monat		112
+ 3	RO	HiWord: Tag	LUNT16	128/29/30/31
+ 3	RO	LoWord: Stunde		023
. 4	RO	HiWord: Minute	LIINT16	059
1 7	RO	LoWord: Sekunde	OINTIO	059

Datenstruktur Max-/Min-Speicher

Tab. 8.14: Datenstruktur Max-/Min-Speicher

8.8 Setup Parameter

Register	Eigen- schaft	Beschreibung	Format	Bereich/Einheit
6000	RW	Übersetzungsver- hältnis Spannungs- wandler	UINT16	1*2200
6001	RW	Übersetzungsver- hältnis Messstrom- wandler	UINT16	1*6000 (Stromeingang 5A) 1*30000 (Stromeingang 1A)
6002	RW	Schaltungsart	UINT16	0 = WYE [*] 1 = DELTA 2 = DEMO
6003	RW	Geräteadresse Modbus RTU	UINT16	1247 (100*)
6004	RW	Modbus RTU Baudrate	UINT16	0 = 1200 1 = 2400 2 = 4800 3 = 9600* 4 = 19200
6005	RW	Modbus RTU Parität	UINT16	0 = 8N2; 1 = 8O1 $2 = 8E1^*; 3 = 8N1$ 4 = 8O2; 5 = 8E2
60066014		Rese	rviert	
6015	RW	Leistungsfaktor λ Regel	UINT16	B1B0: 00* = IEC 01= IEEE 10 = -IEEE
6016	RW	Berechnungs- methode S	UINT16	B1B0: 00* = Vektor 01 = Skalar

Register	Eigen- schaft	Beschreibung	Format	Bereich/Einheit
6017	RW	Polarität Mess- stromwandler L1	UINT16	0* = Normal 1 = Reversed
6018	RW	Polarität Mess- stromwandler L2	UINT16	0* = Normal 1=Reversed
6019	RW	Polarität Mess- stromwandler L3	UINT16	0=Normal 1=Reversed
6020	RW	Zeitraum Bedarfs- messung	UINT16	1, 2, 3, 5, 10, 15*, 60 Minuten
6021	RW	Anzahl Sliding win- dows	UINT16	1*15
60226045		Rese	rviert	•
6046	RW	Setpoints DI1/ DI2	siehe "Da	itenstruktur Set-
6047	RW	Setpoints DI3 / DI4	(Reaister	gitaleingange 6046, 6047 und
6048	RW	Setpoints DI5 / DI6	6048)" auf Seite 71	
60496071		Reserviert		
60726080	RW	Setpoint 1		
60816089	RW	Setpoint 2		
60906098	RW	Setpoint 3		
60996107	RW	Setpoint 4	siehe "Da	tenstruktur Steuer-
61086016	RW	Setpoint 5	setpoints	auf Seite 72
61176125	RW	Setpoint 6		
61266134	RW	Setpoint 7		
61356143	RW	Setpoint 8		
61446152	RW	Setpoint 9		
61536271		Rese	rviert	
6272	RW	Energy pulsing aktivieren	UINT16	0* = nicht aktiviert 1 = aktiviert
6273	RW	Pulskonstante	UINT16	0* = 1000 imp/kxh
6274	RW	Ablesezeit	UINT16	0*
62756289		Rese	rviert	
6290	wo	alle Speicher der Energiewerte löschen	UINT16	Eintrag 0xFF00 in das Register löscht die Energiewerte
6291	wo	Ereignisspeicher löschen	UINT16	Eintrag 0xFF00 in das Register setzt den Pointer des Ereignisspeichers auf 0

Register	Eigen- schaft	Beschreibung	Format	Bereich/Einheit	
6292	wo	Bedarf des aktuel- len Monats löschen	UINT16	Eintrag 0xFF00 in das Register löscht die Bedarfswerte des aktuellen Monats	
6293	wo	Max/Min-Speicher löschen	UINT16	Eintrag 0xFF00 in das Register löscht die Werte des Max/Min-Logs	
62946329	Reserviert				

Tab. 8.15: Setup Parameter

8.8.1 Datenstruktur Setpoints Digitaleingänge (Register 6046, 6047 und 6048)

Digitaleingänge DI1und DI2

DI2				DI1		
Bit	1510	9	8	72	1	0
triggert Digitalausgang	Reserviert	DO2	D01	Reserviert	DO2	D01

Tab. 8.16: Register 6046

Digitaleingänge DI3 und DI4

DI4				DI3			
Bit	1510	9	8	72	1	0	
triggert Digitalausgang	Reserviert	D02	D01	Reserviert	D02	D01	

Tab. 8.17: Register 6047

Digitaleingänge DI5 und DI6

DI6				DI5			
Bit	1510	9	8	72	1	0	
triggert Digitalausgang	Reserviert	DO2	D01	Reserviert	D02	D01	

Tab. 8.18: Register 6048

Beispiel:

Wenn Register 6046 einen Wert von 0x101hat, bedeutet dies folgendes: Nach Aktvierung steuert

- DI1 den Ausgang DO2
- DI2 den Ausgang DO1.

Datenstruktur Steuersetpoints

Offset	Eigenschaft	Beschreibung	Format	Bereich/ Optionen
+ 0	RW	Тур	UINT16	0 = nicht akti- viert 1 = Wertüber- schreitung 2 = Wertunter- schreitung
+ 1	RW	Parameter ¹⁾	UINT16	116
+ 2	RW	Ansprechschwellenwert- Überschreitung	INT32	/
+ 4	RW	Rückfallschwellenwert- Unterschreitung	INT32	/
+ 6	RW	Ansprech-schwellenwert- Verzögerung	UINT16	09999 (s)
+ 7	RW	Rückfall- schwellenwert-Verzögerung	UINT16	09999 (s)
+ 8	RW	Trigger ²⁾	UINT16	021

Tab. 8.19: Datenstruktur Steuersetpoints

Hinweise zur obigen Tabelle:

¹⁾ Parameter

Schlüssel	Parameter	Skalierung/Einheit
0		
1	U _{LN}	x100, V
2	U _{LL}	x100, V
3	1	x 1.000, A
4	P _{ges}	x1.000, kW
5	S _{ges}	x1.000, kvar
6	λ_{ges}	x1.000
7	THDU	x10.000
8	THD	x10.000
9	TEHDU	x10.000
10	TEHD	x10.000
11	TOHDU	x10.000
12	TOHD	x10.000
13	Bedarf P _{ges}	x1.000, kW
14	Bedarf Q _{ges}	x1.000, kvar
15	Bedarf S _{ges}	x1.000, kVA
16	Ø Bedarf I	x1.000, A

Tab. 8.20: Setpoint-Parameter

²⁾ Trigger

Schlüssel	0	1	2	321
Aktion	/	DO1	DO2	Reserviert

Tab. 8.21: Setpoint Trigger

8.9 Ereignisspeicher (SOE-Log)

Jeder Eintrag im Ereignisspeicher belegt 8 Register, wie die folgende Tabelle zeigt. Die interne Datenstruktur des Ereignisspeichers ist in Tabelle 8.23 auf Seite 74 aufgeführt.

Register	Eigenschaft	Beschreibung	Format
1000010007	RO	Ereignis 1	
1000810015	RO	Ereignis 2	
1001610023	RO	Ereignis 3	
1002410031	RO	Ereignis 4	
1003210039	RO	Ereignis 5	
1004010047	RO	Ereignis 6	
1004810055	RO	Ereignis 7	Siehe labelle 8.23 auf Seite 74
1005610063	RO	Ereignis 8	
1006410071	RO	Ereignis 9	
1007210079	RO	Ereignis 10	
1008010087	RO	Ereignis 11	
1050410511	RO	Ereignis 64	

Tab. 8.22: Ereignisspeicher (SOE-Log)

Datenstruktur Ereignis (SOE-Log)

Die folgende Tabelle stellt die interne Datenstruktur der 8 Register dar, die zu jedem Eintrag im Ereignisspeicher (SOE-Log) gehören.

Offset	Eigenschaft	Beschreibung
+ 0	RO	reserviert
+ 1	RO	Ereignis-Klassifizierung (siehe Tabelle 8.24 auf Seite 79 ff.)
+ 2	RO	HiWord: Jahr–2000 LoWord: Monat (112)
+ 3	RO	HiWord: Tag (031) LoWord: Stunde (123)
+ 4	RO	HiWord: Minute (059) LoWord: Sekunde (059)
+ 5	RO	Millisekunde (0…999))
+ 6	RO	HiWord: Ereigniswert
+ 7	RO	LoWord: Ereigniswert

Tab. 8.23: Datenstruktur Ereignis

Ereignis-Klassifizierung (SOE-Log)

Ereignis- Klassi- fizierung	Ereignis Unter- klassi- fizierung	EreigniswertEin heit Option	Bedeutung		
-	1	1/0	Digitaler Eingang 1 geschlossen/geöffnet		
	2	1/0	Digitaler Eingang 2 geschlossen/geöffnet		
1	3	1/0	Digitaler Eingang 3 geschlossen/geöffnet		
	4	1/0	Digitaler Eingang 4 geschlossen/geöffnet		
	5	1/0	Digitaler Eingang 5 geschlossen/geöffnet		
	6	1/0	Digitaler Eingang 6 geschlossen/geöffnet		
1		1/0	Digitaler Ausgang 1 geschlossen/geöffnet durch Mod- buszugriff		
	2	1/0	Digitaler Ausgang 2 geschlossen/geöffnet durch Mod- buszugriff		
	34		Reserviert		
	5	1/0	Digitaler Ausgang 1 geschlossen/geöffnet durch Set- point		
	6	1/0	Digitaler Ausgang 2 geschlossen/geöffnet durch Set- point		
2	78		Reserviert		
2	9	1/0	Digitaler Ausgang 1 geschlossen/geöffnet durch Taster Frontseite		
	10	1/0 Digitaler Ausgang 2 geschlossen/geöffnet durch Ta Frontseite			
	1114	Reserviert			
	15	1/0	Digitaler Ausgang 1 geschlossen/geöffnet durch Dl Setpoint		
	16	1/0	Digitaler Ausgang 2 geschlossen/geöffnet durch DI Setpoint		
	1718	Reserviert			

Ereignis- Klassi- fizierung	Ereignis Unter- klassi- fizierung	EreigniswertEin heit Option	Bedeutung
	1	Trigger-Wert x 100	>-Setpoint U _{LN} überschritten
	2	Trigger-Wert x 100	>-Setpoint U _{LL} überschritten
	3	Trigger-Wert x 1000	>-Setpoint / überschritten
	4	Trigger-Wert	>-Setpoint P _{ges} überschritten
	5	Trigger-Wert	>-Setpoint Q _{ges} überschritten
	6	Trigger-Wert x 1000	>-Setpoint λ_{ges} überschritten
	7	Trigger-Wert x 10.000	>-Setpoint THD _U überschritten
8 9 10	8	Trigger-Wert x 10.000	>-Setpoint THD _I überschritten
	Trigger-Wert x 10.000	>-Setpoint TEHD _U überschritten	
	10	Trigger-Wert x 10.000	>-Setpoint TEHD _I überschritten
3	11	Trigger-Wert x 10.000	>-Setpoint TOHD _U überschritten
	12	Trigger-Wert x 1000	>-Setpoint TOHD _I überschritten
	13	Trigger-Wert x 1000	>-Setpoint Bedarf P _{ges} überschritten
	14	Trigger-Wert x 1000	>-Setpoint Bedarf Q _{ges} überschritten
	15	Trigger-Wert x 1000	>-Setpoint Bedarf S _{ges} überschritten
	16	Trigger-Wert x 100	>-Setpoint Bedarf / überschritten
	17	Rückfall-Wert x 100	>-Setpoint U _{LN} zurückgesetzt
	18	Rückfall-Wert x 100	>-Setpoint U _{LL} zurückgesetzt
	19	Rückfall-Wert x 1000	>-Setpoint / zurückgesetzt
	20	Rückfall-Wert	>-Setpoint P _{ges} zurückgesetzt
	21	Rückfall-Wert	>-Setpoint Q _{ges} zurückgesetzt

Ereignis- Klassi- fizierung	Ereignis Unter- klassi- fizierung	EreigniswertEin heit Option	Bedeutung
	22	Rückfall-Wert x 1000	>-Setpoint λ_{ges} zurückgesetzt
	23	Rückfall-Wert x 10.000	>-Setpoint THD _U zurückgesetzt
	24	Rückfall-Wert x 10.000	>-Setpoint THD _I zurückgesetzt
	25	Rückfall-Wert x 10.000	>-Setpoint TEHD _U zurückgesetzt
	26	Rückfall-Wert x 10.000	>-Setpoint TEHD _I zurückgesetzt
	27	Rückfall-Wert x 10.000	>-Setpoint TOHD _U zurückgesetzt
	28	Rückfall-Wert x 1000	>-Setpoint TOHD _I zurückgesetzt
29 30 31	29	Rückfall-Wert x 1000	>-Setpoint Bedarf P _{ges} zurückgesetzt
	30	Rückfall-Wert x 1000	>-Setpoint Bedarf Q _{ges} zurückgesetzt
	31	Rückfall-Wert x 1000	>-Setpoint Bedarf S _{ges} zurückgesetzt
3	32	Rückfall-Wert x 100	>-Setpoint Bedarf / zurückgesetzt
	33	Trigger-Wert x 100	<-Setpoint U _{LN} unterschritten
	34	Trigger-Wert x 100	<-Setpoint U _{LL} unterschritten
	35	Trigger-Wert x 1000	<-Setpoint / unterschritten
	36	Trigger-Wert	<-Setpoint P _{ges} unterschritten
	37	Trigger-Wert	<-Setpoint Q _{ges} unterschritten
	38	Trigger-Wert x 1000	<-Setpoint λ_{ges} unterschritten
	39	Trigger-Wert x 10.000	<-Setpoint THD _U unterschritten
	40	Trigger-Wert x 10.000	<-Setpoint THD _I unterschritten
	41	Trigger-Wert x 10.000	<-Setpoint TEHD _U unterschritten
	42	Trigger-Wert x 10.000	<-Setpoint TEHD _I unterschritten

Ereignis- Klassi- fizierung	Ereignis Unter- klassi- fizierung	EreigniswertEin heit Option	Bedeutung			
	43	Trigger-Wert x 10.000	<-Setpoint TOHD _U unterschritten			
	44 Trigger-Wert x 1000		<-Setpoint TOHD _I unterschritten			
	45	Trigger-Wert x 1000	<-Setpoint Bedarf P _{ges} unterschritten			
	46	Trigger-Wert x 1000	<-Setpoint Bedarf Q _{ges} unterschritten			
	47	Trigger-Wert x 1000	<-Setpoint Bedarf S _{ges} unterschritten			
	48	Trigger-Wert x 100	<-Setpoint Bedarf / unterschritten			
	49	Rückfall-Wert x 100	<-Setpoint U _{LN} zurückgesetzt			
50	Rückfall-Wert x 100	<-Setpoint U _{LL} zurückgesetzt				
	51 Rückfall-Wert x 1000 52 Rückfall-Wert 3 53 Rückfall-Wert	Rückfall-Wert x 1000	<-Setpoint / zurückgesetzt			
		<-Setpoint P _{ges} zurückgesetzt				
3		Rückfall-Wert	<-Setpoint Q _{ges} zurückgesetzt			
	54	Rückfall-Wert x 1000	<-Setpoint λ_{ges} zurückgesetzt			
	55	Rückfall-Wert x 10.000	<-Setpoint THD _U zurückgesetzt			
	56	Rückfall-Wert x 10.000	<-Setpoint THD ₁ zurückgesetzt			
	57	Rückfall-Wert x 10.000	<-Setpoint TEHD _U zurückgesetzt			
	58	Rückfall-Wert x 10.000	<-Setpoint TEHD _I zurückgesetzt			
	59	Rückfall-Wert x 10.000	<-Setpoint TOHD _U zurückgesetzt			
	60	Rückfall-Wert x 1000	<-Setpoint TOHD _I zurückgesetzt			
	61	Rückfall-Wert x1000	<-Setpoint Bedarf P _{ges} zurückgesetzt			
	62	Rückfall-Wert x1000	<-Setpoint Bedarf Q _{ges} zurückgesetzt			
	63	Rückfall-Wert x 1000	<-Setpoint Bedarf S _{ges} zurückgesetzt			

Ereignis- Klassi- fizierung	Ereignis Unter- klassi- fizierung	EreigniswertEin heit Option	Bedeutung		
	64		<-Setpoint Bedarf / zurückgesetzt		
	65	Bit 31	Zeigt, welcher DO von DI-Setpoint getriggert wird 0 = geöffnet 1 = geschlossen		
3		Bits 1630	Zeigt, welcher DI von DO getriggert wurde 1 = DI1 2 = DI2 3 = DI3 4 = DI4 5 = DI5 6 = DI6		
		Bits 215	Reserviert		
		Bits 01	Zeigt, welche DO von den zugeordneten DI getriggert werden Bit 0 = DO1/ Bit 1 = DO2		
	6669	Reserviert			
	1 0		Versorgungsspannung ein		
	2	0	Versorgungsspannung aus		
	3	0	Setup geändert über Gerätetasten		
	4	0	Setup geändert über Kommunikation		
	5	0	Zähler DI gelöscht über Kommunikation		
	6	0	Ereignisspeicher gelöscht über Gerätetasten		
	7	0	Ereignisspeicher gelöscht über Kommunikation		
4	8	0	Energiewerte gelöscht über Gerätetasten		
4	9	0	Energiewerte gelöscht über Kommunikation		
	10	0	Spitzenbedarf des aktuellen Monats gelöscht über Gerätetasten		
	11	0	Spitzenbedarf des aktuellen Monats gelöscht über Kommunikation		
	12	0	Speicher Max-/Min-Werte des aktuellen Monats gelöscht über Gerätetasten		
	13	0	Speicher Max-/Min-Werte des aktuellen Monats gelöscht über Kommunikation		
	14		Reserviert		
5	16		Reserviert		
6	117	Reserviert			

Tab. 8.24: Ereignis-Klassifizierung

8.10 Zeiteinstellung

Das PEM533 bietet zwei Formate der Zeitdarstellung :

- 1. Jahr/Monat/Tag/Stunde/Minute/Sekunde Register 9000...9002
- 2. UNIX-ZeitRegister 9004

Beim Setzen der Zeit über Modbus muss darauf geachtet werden, dass lediglich ein Format der Zeitdarstellung verwendet wird. Die zusammengehörenden Register müssen gleichzeitig gesetzt werden.

Wenn sämtliche Register **9000...9004** gesetzt worden sind, so zeigen beide Zeitstempel-Register die Zeit als UNIX-Zeit an. Eventuell vorgenommene Einstellungen in der ersten Darstellungsweise werden ignoriert.

Das Register **9003** zeigt optional Millisekunden an. Für die Zeitstempel-Übertragung muss der Funktionscode auf 0x10 (Preset Multiple Register) gesetzt werden. Ungültige Datums-oder Zeiteinträge weist das Universalmessgerät zurück.

Register	Eigen- schaft	Beschreibung	Format	Hinweis
9000	RW	Jahr und Monat	UINT16	HiWord: Jahr - 2000 LoWord: Monat (112)
9001	RW	Tag und Stunde	UINT16	HiWord: Tag (128/29/30/31) LoWord: Stunde (023)
9002	RW	Minute und Sekunde	UINT16	HiWord: Minute (059) LoWord: Sekunde (059)
9003	RW	Millisekunde	UINT16	0999
9004	RW	UNIX Time	UINT32	Zeit in Sekunden, die seit dem 01.Januar 1970 (00:00:00 h) vergangen sind (04102444799)

Tab.	8.25:	Zeitst	tempe	el-F	Reg	ister
------	-------	--------	-------	------	-----	-------

8.11 Steuerung der Ausgänge DOx

Die Steuerregister der digitalen Ausgänge sind Nur-Schreibe-Register (WO) und werden mit dem Funktionscode 0x05 gesetzt. Um den aktuellen Status der Ausgänge abzufragen, muss das Register **0081** ausgelesen werden.

PEM533 unterstützt das zweistufige Ausführen von Befehlen an die Ausgänge (**ARM before EXECUTING**): Ehe ein Öffnen- bzw. Schließen-Befehl an einen der Ausgänge gesendet wird, muss dieser erst aktiviert werden. Dies geschieht über den Eintrag 0xFF00 in das jeweilige DO-Register. Wenn der aktivierte Ausgang nicht innerhalb von 15 Sekunden einen auszuführenden Befehl erhält, so wird dieser Ausgang wieder deaktiviert.

Jeder auszuführende Befehl, der an einen nicht zuvor aktivierten Ausgang geschickt wird, wird vom PEM533 ignoriert und stattdessen als Ausnahmecode 0x04 zurückgegeben.

Register	Eigen- schaft	Format Beschreibung	
9100	WO	UINT16	Schließen DO1 aktivieren
9101	WO	UINT16	Schließen DO1 ausführen
9102	WO	UINT16	Öffnen DO1 aktivieren
9103	WO	UINT16	Öffnen DO1 ausführen
9104	WO	UINT16	Schließen DO2 aktivieren
9105	WO	UINT16	Schließen DO2 ausführen
9106	WO	UINT16	Öffnen DO2 aktivieren
9107	WO	UINT16	Öffnen DO2 ausführen
91089165	Reserviert		

Tab. 8.26: Steuerregister digitale Ausgänge

8.12 Information Universalmessgerät

Register	Eigen- schaft	Beschreibung	Format	Hinweis		
9800 9819	RO	Modell [*]	UINT16	Siehe Tabelle 8.28 auf Seite 82		
9820	RO	Software Version	UINT16	Bsp.: 10000 = V1.00.00		
9821	RO	Protokoll Version	UINT16	Bsp.: 40 = V4.0		
9822	RO	Software Update Datum (Jahr - 2000)	UINT16			
9823	RO	Software Update Datum: Monat	UINT16	Bsp.: 080709 = 09.Juli 2008		
9824	RO	Software Update Datum: Tag	UINT16			
9825	RO	Seriennummer				
98279829	Reserv	iert				
9830	RO	Eingangsmess- strom	UINT16	1 / 5 (A)		
9831	RO	Us	UINT16	100 / 400 (V)		

Tab. 8.27: Informationen Universalmessgerät

* Das Modell des Universalmessgeräts ist in den Registern 9800...9819 enthalten. Die folgende Tabelle zeigt die Kodierung am Beispiel "PEM533".

Register	Value(Hex)	ASCII
9800	0x50	Р
9801	0x45	E
9802	0x4D	М
9803	0x35	5
9804	0x33	3
9805	0x33	3
98069819	0x20	Null

Tab. 8.28: ASCII-Kodierung "PEM533"

9. Technische Daten

Isolationskoordination

Messkreis

Bemessungsspannung	300 V
Überspannungskategorie	
Verschmutzungsgrad	2

Versorgungskreis

Bemessungsspannung	. 300 \
Überspannungskategorie	
Verschmutzungsgrad	7

Versorgungsspannung

Bemessungsversorgungsspannung U _c		250 V
Frequenzbereich von U.	DC, 44	.440 Hz
Eigenverbrauch		$\leq 5 \text{ VA}$

Messkreis

Messspannungseingänge

U _{11-N12-N13-N}	
U_1_1_2_1_2_1_3_1_3_1_1	
Messbereich	
Innenwiderstand (L-N)	> 500 kΩ

Messstromeingänge

Messstromwa	andler externsollten mindestens d	er Genauigkeitsklasse 0,5 S entsprechen
Bürde		n.A., interne Stromwandler
Messbereich .		0,1 120% / _N
PEM533		
	/ _N	
	Messstromwandler-Übersetzungsverhältnis	
PEM533-251	-	
	/ _N	
	 Messstromwandler-Übersetzungsverhältnis	

Genauigkeiten (v. M. vom Messwert/v. S. vom Skalenendwert)

Strangspannung U _{L1-N} , U _{L2-N} , U _{L3-N}	± 0,2 % v. M.
Strom	
Neutralleiterstrom /4	
Frequenz	± 0,02 Hz
Phasenlage	±1°
Messung der Wirkenergie 0.5S	nach DIN EN 62053-22 (VDE 0418 Teil 3-22)
Messung der Effektivwerte der Spannung	nach DIN EN 61557-12 (VDE 0413-12), Kap. 4.7.6
Messung der Effektivwerte des Phasenstroms	nach DIN EN 61557-12 (VDE 0413-12), Kap. 4.7.5
Messung der Frequenz	nach DIN EN 61557-12 (VDE 0413-12), Kap. 4.7.4

Schnittstelle

Schnittstelle/Protokoll			RS-485 / I	Modbus RTU
Baudrate			1,2	. 19,2 kBit/s
Leitungslänge			(01200 m
Empfohlene Leitung (geschirmt, Schirm einseitig an PE)			J-Y(St)Y	min. 2 x 0,8
Schaltglieder				
Ausgänge				2 x Schließer
Arbeitsweise				Arbeitsstrom
Bemessungsbetriebsspannung	AC 230 V	DC 24 V	AC 110 V	DC 12 V
Bemessungsbetriebsstrom	5 A	5 A	6 A	5 A
Minimale Kontaktbelastbarkeit			1 mA bei AC	$/ \text{DC} \ge 10 \text{ V}$
Eingänge		6 galv. g	jetrennte Digi	italeingänge
/ _{min}				2,4 mA
<i>U</i> _{DI}				DC 24 V
Umwelt / EMV				
EMV				IEC 61326-1
Arbeitstemperatur			2	5+55 °C
Klimaklasse nach DIN EN 60721(Ortsfester Einsatz)				3K5
Mechanische Beanspruchung nach DIN EN 60721 (Ortsfeste	er Einsatz)			3M4
Anschluss				
Anschlussart			Schra	ubklemmen
Sonstiges				
Schutzart Einbau				IP20

Gewicht	
	Č.

9.1 Normen und Zulassungen

PEM533 wurde unter Beachtung folgender Normen entwickelt:

Schutzart Front IP65

DIN EN 62053-22 (VDE 0418 Teil 3-22)

Wechselstrom-Elektrizitätszähler - Besondere Anforderungen - Teil 22: Elektronische Wirkverbrauchszähler der Genauigkeitsklassen 0,2 S und 0,5 S (IEC 62053);

DIN EN 61557-12 (VDE 0413-12)

Elektrische Sicherheit in Niederspannungsnetzen bis AC 1000 V und DC 1500 V – Geräte zum Prüfen, Messen oder Überwachen von Schutzmaßnahmen – Teil 12: Kombinierte Geräte zur Messung und Überwachung des Betriebsverhaltens

9.2 Bestellinformationen

Тур	Stromeingang	Artikel- nummer
PEM533 230 V/400 V, 50 Hz	5A	B 9310 0533
PEM533-251 230 V/400 V, 50 Hz	1A	B 9310 0534
PEM533-455 400 V/690 V, 50 Hz	5A	B 9310 0535
PEM533-451 400 V/690 V, 50 Hz	1A	B 9310 0536

INDEX

A

Anschluss über Spannungswandler 22 Anschlussschaltbild 19 Anschlussschema - Dreiphasen-3-Leitersysteme 22 - Dreiphasen-4-Leitersysteme 21 Anwendungsbeispiel 15 Anzeigemodus - Datenanzeige 30 - Standardanzeige 30 Arbeiten an elektrischen Anlagen 11 Asymmetrie 52 Ausgang, digitaler 22

В

Bedarf 46 Bedarf, Länge Messzeitraum 46 Bedienelemente 25 Benutzungshinweise 7 Bestimmungsgemäße Verwendung 11

D

Demand Display 28 Digitale Eingänge 22 Digitaler Ausgang 22 - Steuerung Modbus 80

Е

Eingänge, digitale 22 Einsatzbereich 13 Energy Pulsing - aktivieren/deaktivieren 40 - Anzeige 45 - LED-Anzeige 29 Ereignis - Klassifizierung 75 - Modbusregister 74 - Speicher 51

F

Frontansicht 16 Fronttafeleinbau 18 Funktionsbeschreibung 15

G

Gerätemerkmale 13 Gesamt-Oberschwingungsverzerrung 34, 35

H Harmonische Oberschwingung 35, 52

I

Inbetriebnahme 23

Κ

k-Faktor 34

L

LC-Display - Leistungs- und Strombedarfe 28 - Standarddisplayanzeigen 26—28 - Test 26 LED-Anzeige 29

Μ

Maßbild 17 Messstromwandler 19

Messzeitraum Bedarf, Länge einstellen 46 Modbus

- Basismesswerte 53 - Energiemessung 56 - Ereignisspeicher 74 - Informationen Messgerät 81 - Registerübersicht 53 - Setup-Parameter 69 - SOE-Log 74 - Spitzenbedarf 62 Montage 17

Ρ

Phasenwinkel - Spannung 45 - Strom 45 Power Factor Regeln 41 Power Quality 51 Praxisseminare 9

S

Scheinleistung, Berechnung 42 Schulungen 9 Service 7 Setpoint, digitale Ein-u. Ausgänge 49 Setup 37 - Bedeutung der Taster 36 - Einstellmöglichkeiten 38-41 - Modus starten 36 - Übersichtsdiagramm Menü 36 Sicherheitshinweise 11, 17 Sliding Window 46 SOE-Log - Datenstruktur 63 - Modbus 74 Steuer-Setpoint 47 Steuerung - Digitale Ausgänge 80 Support 7

Symbole 7

Т

Taster - Energy 36 Technische Daten 83 TEHD 34, 48, 51 THD 34 TOHD 35, 48, 51

۷

Versionen 14 Verwendung, bestimmungsgemäße 11 Vorsicherungen 19

Bender GmbH & Co. KG

Londorfer Str. 65 • 35305 Grünberg • Germany Postfach 1161 • 35301 Grünberg • Germany

Tel.: +49 6401 807-0 Fax: +49 6401 807-259

E-Mail: info@bender.de www.bender.de

