

PEM735 - Webserver

Universalmessgerät

100...690 V, 50 Hz Softwareversion 2.00.xx

Bender GmbH & Co. KG Londorfer Str. 65 • 35305 Grünberg • Germany Postfach 1161 • 35301 Grünberg • Germany

Tel.: +49 6401 807-0 Fax: +49 6401 807-259

E-Mail: info@bender.de www.bender.de

© Bender GmbH & Co. KG

Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Herausgebers. Änderungen vorbehalten!

Inhaltsverzeichnis

1.	Weban	wendung allgemein	. 7
	1.1	Startseite	. 7
	1.2	Spracheinstellungen	. 8
	1.3	Navigation	. 8
2.	EN 501	60-Report	. 9
	2.1	Netzfrequenz	11
	2.2	Spannungsschwankungen	11
	2.3	Flickerstärke	12
	2.4	Unsymmetrie der Versorgungsspannung	12
	2.5	Oberschwingungsspannung	13
	2.6	Netz-Signalübertragungsspannung (Rundsteuersignale)	15
	2.7	Zwischenharmonische Spannungen	15
	2.8	Schnelle Spannungsänderungen	16
	2.9	Spannungsunterbrechungen (Interruptions)	16
	2.10	Spannungsüberhöhung	16
	2.11	Spannungseinbrüche	16
	2.12	Transiente Spannungen	16
3.	Messwe	ert	17
	3.1	Zeigerdiagramm	17
	3.2	Spannung U(L-N)	18
	3.3	Spannung U(L-L)	18
	3.4	Strom	19
	3.5	Harmonische	20
	3.6	Leistung	21
	3.7	Energie	21

4.	Rekord	er	23
	4.1	Datenrekorder	. 25
	4.2	Kurvenformrekorder	. 26
5.	Ereigni	sse	27
	5.1	SOE-Log (Sequence Of Events)	. 27
	5.2	PQ-Log (Netzqualität)	. 42
6.	Setpoir	nt-Rekorder-Matrix	45
7.	Einstell	ungen Trigger	47
	7.1	Standard-Setpoint	. 47
	7.2	Highspeed-Setpoint	. 49
	7.3	SAG/SWELL	. 50
	7.4	Transienten	. 52
	7.5	Schnelle Spannungsänderungen	. 53
8.	Einstell	ungen Rekorder	55
	8.1	Datenrekorder	. 55
	8.2	Highspeed-Datenrekorder	. 57
	8.3	Kurvenformrekorder	. 59
9.	Einstell	ungen Gerät	61
	9.1	Löschen	. 62
	9.2	Digitaler Eingang	. 62
	9.3	Digitaler Ausgang	. 63
	9.4	Anschluss	. 64
	9.5	Berechnungseinstellungen	. 66
	9.6	Serielle Schnittstelle	. 69
	9.7	Ethernet	. 70
	9.8	Uhr	. 70
	9.9	Info/Update	. 71

10. Glossar und Begriffe	73
INDEX	81

1. Webanwendung allgemein

Dieser Teil des Handbuchs beschreibt die Webanwendung des PEM735. Mit der Webanwendung lassen sich mehr Messdaten abrufen und umfangreichere Einstellungen des Universalmessgeräts PEM735 vornehmen, als es am Gerät selbst möglich ist.

Hinweise zur Erstinbetriebnahme des PEM735 und Netzwerkeinstellungen finden Sie im Handbuch des PEM735.

Beachten Sie die Dokumentation des PEM735 bezüglich Anschluss und Einstellungen, um valide Messergebnisse zu erhalten!

1.1 Startseite

Geben Sie die Netzwerkadresse des PEM735 in die Adresszeile des Browsers ein. Beispiel: 172.16.80.110

Es öffnet sich die Startseite. Hierhin kehren Sie später jederzeit durch Klick auf das Bender-Logo zurück.

Abb. 1.1: Startseite Webanwendung PEM735

1.2 Spracheinstellungen

Einstellmöglichkeiten: deutsch oder englisch

1.3 Navigation

In der linken Spalte finden Sie die Menüpunkte zur Navigation durch die Menüs.

Mit Klick auf einen Eintrag der Navigationsspalte öffnen sich die Untermenüs, falls es welche gibt.

Bei kleinen Monitoren kann man die Navigation einklappen, um mehr Platz für die Darstellung des Inhalts (Grafik, Messwerte...) zu haben.

2. EN 50160-Report

Die Ergebnisse des EN-50160-Reports können sowohl im Überblick als auch im Detail angeschaut werden. Einstellungen können an dieser Stelle – abgesehen von der Auswahl des zu betrachtenden Reports – nicht vorgenommen werden.

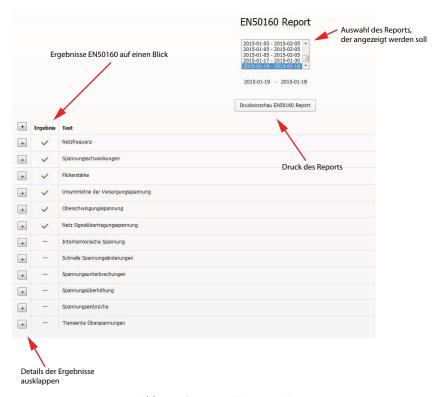


Abb. 2.1: Startseite EN 50160-Report

Anmerkungen zu Abbildung 2.1:

Ergebnisse auf einen Blick:

- ✓ Grenzwerte EN 50160 eingehalten (PASSED)
- X EN 50160 nicht eingehalten (FAILED)
- Es gibt keine Grenzwerte in der EN 50160

Auswahl eines Reports zur Anzeige

PEM735 kann bis zu 52 einzelne EN 50160-Reports in einem Ringspeicher speichern. Diese können einzeln über die Liste ausgewählt und angezeigt werden.

Druck des Reports

Der ausgewählte Report kann auch ausgedruckt werden. Dies ist auch als pdf möglich, wenn Sie auf ihrem Rechner/Tablet einen pdf-Drucker eingerichtet haben.

Die Berechnungsgrundlagen für den EN 50160-Report werden den aktuellen Geräteeinstellungen entnommen und in die Reports gedruckt.

Bevor Sie Änderungen an den Anschlussparametern vornehmen, drucken Sie eventuell vorhandene EN 50160-Reports aus und löschen Sie die Historie des EN 50160-Speichers.

Andernfalls können Sie die einzelnen Reports wegen unterschiedlicher Berechnungsgrundlagen nicht mehr miteinander vergleichen. Der Report, der während der Parameterumstellung geschrieben wird, kann nicht verwendet werden.

Die Änderung folgender Parameter führt dazu, dass bereits vorhandene EN 50160-Reports nicht mehr verwendet werden können:

- Aktualisierungsintervall Frequenz
- max. Ordnung Harmonische zur Berechnung THD, TEHD, TOHD
- Starttag EN 50160- Bericht
- Ankopplung (Stern oder Dreieck)
- PT Primär
- PT Sekundär
- Nennspannung, bezogen auf die Sekundärspannung
- Nennfrequenz
- Flicker Modus
- Netz Signalübertragungsspannung Frequenz 1...3
- Netz Signalübertragungsspannung Schwellenwert 1...3
- Zeiteinstellungen

Details der Ergebnisse

Mit einem Klick auf das + gelangen Sie auf die Detailseiten der Messungen. In der Detailansicht zu den Messungen gibt es jeweils eine Übersicht über die Einstellungen und die Ergebnisse des gewählten Reports.

Beim Ergebnis werden die prozentualen Anteile und Extremwerte der Messung aufgelistet.

2.1 Netzfrequenz

Definition "Prozentualer Anteil": {Zeitraum mit korrekten Messwerten} / {Gesamtmesszeitraum}

Einstellungen

f_n: Die Netzfrequenz beträgt 50 bzw. 60 Hz.

Weite Grenzwerte: Alle Messwerte (= 100 % der Zeit) müssen sich im Intervall

 $f_{\rm n}$ -6 /+ 4 % befinden.

Enge Grenzwerte: Für Netze mit synchroner Verbindung zu einem Ver-

bundnetz gibt die DIN EN 50160 bezüglich der Netzfrequenz f_n ein Intervall von 49,5...50,5 Hz für 99,5 % eines

Jahres vor.

Aktualisierungsintervall Frequenz: Muss für die notwendige Mittelwertbildung in

den Einstellungen auf "10 s" gesetzt sein (siehe Seite 68).

2.2 Spannungsschwankungen

Einstellungen

 U_n : 400,00 V (U_n = Nenn-Außenleiterspannung)

Weite Grenzwerte (gefordert 100,00 % der Zeit)

Alle Messwerte des Jahres müssen sich im Intervall 195,5...253,0 V befinden (-15,00 % / +10,00 %).

Enge Grenzwerte (gefordert 95,00 % der Zeit)

Die Spannung soll während 95 % des Betrachtungszeitraums (= eine Woche) um nicht mehr als 10 % von der Nennspannung U_n abweichen ($\pm 10,00$ % bzw. 207,0...253,0 V).

Für die Betrachtung der Spannungshöhe werden **10-Minuten-Mittelwerte des Spannungseffektivwertes** herangezogen.

2.3 Flickerstärke

Spannungsschwankungen verursachen Leuchtdichteänderungen von Lampen, die eine optisch wahrnehmbare Erscheinung hervorrufen können. Diese werden als *Flicker* bezeichnet. Flicker wirken oberhalb einer bestimmten Schwelle störend. Die subjektive Störwirkung wächst sehr schnell mit der Amplitude der Schwankung an. Bei bestimmten Wiederholraten können jedoch bereits sehr kleine Amplituden störend sein.

Die Intensität der Flickerstörwirkung wird mit Hilfe der folgenden Größen bewertet:

- Kurzzeit-Flickerstärke (Perceptibility unit short term Pst), gemessen über ein Zeitintervall von zehn Minuten;
- Langzeit-Flickerstärke (Perceptibility unit long term Plt), berechnet aus einer Folge von 12 Pst-Werten (= 2-Stunden-Intervall) nach der nachfolgenden Gleichung

$$P_{\text{lt}} = 3 \sum_{i=1}^{12} \frac{P_{\text{st}i}^{3}}{12}$$

Einstellungen

Grenzwerte: Plt muss während 95 % der Zeit eines beliebigen Wochen-

intervalls ≤ 1 betragen.

Modus: 120 V oder 230 V (Einstellungen Gerät > Berechnungseinstel-

lungen > Flicker Modus)

Ergebnis

P95 95 % aller Messwerte sind kleiner oder gleich diesem Wert

(95. Perzentil)

2.4 Unsymmetrie der Versorgungsspannung

Unter normalen Betriebsbedingungen müssen innerhalb eines beliebigen Wochenintervalls 95 % der 10-Minuten-Mittelwerte des Effektivwerts der Gegensystemkomponente der Versorgungsspannung (bezogen auf die Grundschwingung) innerhalb des Bereichs von 0...+2 % der entsprechenden Mitsystemkomponente (bezogen auf die Grundschwingung) liegen.

In manchen Gegenden mit Anlagen von Netznutzern, die teilweise ein- oder zweiphasig angeschlossen sind, treten Unsymmetrien bis zu etwa 3 % an den Drehstrom-Übergabestellen auf.

EN 50160 betrachtet nur die für Gerätestörungen bedeutsame Gegensystemkomponente.

2.5 Oberschwingungsspannung

Innerhalb des Betrachtungszeitraums (1 Woche) müssen 95 % der 10-Minuten-Mittelwerte des Spannungseffektivwertes $U_{\rm rms}$ kleiner oder gleich den Grenzwerten aus Tabelle 2.1 sein. Die Gesamtoberschwingungsverzerrung THD (aus HD2...40) darf maximal 8 % betragen.

Bei Verwendung des EN 50160-Reports muss die maximale Ordnung der Harmonischen zur Berechnung von THD, TEHD und TOHD zwingend auf "40" eingestellt sein.

{Einstellungen Gerät > Berechnungseinstellungen > max. Ordnung Harmonische zur Berechnung THD, TEHD, TOHD}

Ordnung Oberschwingung	Prozentsatz (%)	Ordnung Oberschwingung	Prozentsatz (%)
2	2,0	3	5,0
4	1,0	5	6,0
6	0,5	7	5,0
8	0,5	9	1,5
10	0,5	11	3,5
12	0,5	13	3,0
14	0,5	15	0,5
16	0,5	17	2,0
18	0,5	19	1,5
20	0,5	21	0,5
22	0,5	23	1,5
24	0,5	25	1,5

Tab. 2.1: Grenzwerte für Oberschwingungen

Anmerkung Tabelle 2.1:

Die 3n-Harmonischen sind hervorgehoben. Sie tragen maßgeblich zur unerwünschten Erwärmung des Neutralleiters bei.

EN 50160 macht nur Vorgaben bis zur 25. Oberschwingung, da sie gewöhnlich niedrig, allerdings wegen Resonanzerscheinungen weitgehend unvorhersehbar sind.

Erklärungen zum Diagramm der Oberschwingungsspannungen, das sich unter der Tabelle der Oberschwingungsspannungen findet: :

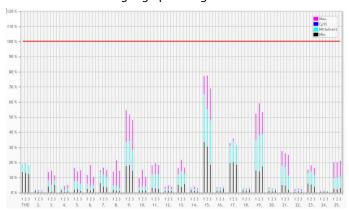


Abb. 2.2: Screenshot: Diagramm der Oberschwingungsspannungen

Die rote Linie entspricht 100 % des jeweiligen Limits der individuellen Oberschwingung. Die im Diagramm dargestellten Werte (Maximalwert, 95. Perzentil, Mittelwert und Minimalwert) werden auf diesen Wert bezogen. Die individuellen Oberschwingungsspannungen sind je Phase (1...3) aufgegliedert.

2.6 Netz-Signalübertragungsspannung (Rundsteuersignale)

Netz-Signalübertragungsspannungen auf der Versorgungsspannung/Rundsteuersignale sind der Versorgungsspannung überlagerte Signale, die dazu dienen, Informationen im öffentlichen Elektrizitätsversorgungsnetz und in die Räume des Netznutzers zu übertragen.

Die Signalspannungen in den öffentlichen Elektrizitätsversorgungsnetzen können eingeteilt werden (nach DIN 50160):

- Tonfrequenz-Rundsteuersignale: der Versorgungsspannung überlagerte sinusförmige Signalspannungen im Frequenzbereich von 110...3 000 Hz;
- Signalmarken auf der Versorgungsspannung: der Versorgungsspannung überlagerte kurzzeitige Spannungsänderungen (Transiente) an ausgewählten Punkten der Spannungskurve.

PEM735 kann in drei verschiedenen Frequenzbereichen die Spannung der Signale ermitteln. Die Grenzen der Frequenzbereiche können vom Benutzer festgelegt werden. Der Frequenzbereich ist nach oben auf 3 kHz begrenzt.

Einstellung der Frequenzen unter

Einstellungen Gerät > Berechnungseinstellungen > Netz-Signalübertragungsspannung Frequenz 1...3

Einstellung der Schwellenwerte unter

Einstellungen Gerät > Berechnungseinstellungen > Netz-Signalübertragungsspannung Schwellenwert 1...3

2.7 Zwischenharmonische Spannungen

Zwischenharmonische zwischen der (n-1)-ten und der n-ten Harmonischen Es gibt derzeit keine einzuhaltenden Grenzwerte.

Zwischenharmonische können Flicker hervorrufen oder Netz-Signalübertragungssysteme stören.

2.8 Schnelle Spannungsänderungen

Es gibt derzeit keine einzuhaltenden Grenzwerte. Protokolliert werden hier die Anzahl dieser Ereignisse im Betrachtungszeitraum.

Einstellungen: siehe "Kapitel 7. Einstellungen Trigger"

2.9 Spannungsunterbrechungen (Interruptions)

Es gibt derzeit keine einzuhaltenden Grenzwerte. Protokolliert werden hier die Anzahl dieser Ereignisse im Betrachtungszeitraum.

Einstellungen: siehe "Kapitel 7. Einstellungen Trigger"

2.10 Spannungsüberhöhung

Es gibt derzeit keine einzuhaltenden Grenzwerte.

Die Detailseiten geben eine Auswertung der Spannungsüberhöhungen nach Dauer und relativer Höhe.

Einstellungen: siehe "Kapitel 7. Einstellungen Trigger"

2.11 Spannungseinbrüche

Es gibt derzeit keine einzuhaltenden Grenzwerte.

Die Detailseiten geben eine Auswertung der Spannungseinbrüche nach Dauer und relativer Höhe.

Einstellungen: siehe "Kapitel 7. Einstellungen Trigger"

2.12 Transiente Spannungen

Es gibt derzeit keine einzuhaltenden Grenzwerte. Transiente Spannungen können sowohl Über- als auch Unterspannungen sein. Protokolliert werden hier die Anzahl dieser Ereignisse im Betrachtungszeitraum.

Einstellungen: siehe "Kapitel 7. Einstellungen Trigger"

3. Messwert

3.1 Zeigerdiagramm

Im Zeigerdiagramm werden Spannungen und Ströme relativ zueinander dargestellt.

Die zusammengehörenden Spannungen und Ströme sind farblich ähnlich (hellund dunkelblau, hell- und dunkelgrün, rot und orange). So lassen sich die Phasenwinkel zwischen Strom und Spannung leicht zuordnen. Die Ströme sind bis zum inneren, die Spannungen bis zum äußeren Kreis aufgetragen und jeweils auf den betragsmäßig größten Strom-/ Spannungswert normiert.

Werden Ströme von 0 A gemessen, ergibt sich für die Phasenwinkel ein "n. a." (nicht anwendbar / not applicable).

Phasenverschiebungswinkel φ in ° zwischen Spannung und Strom.

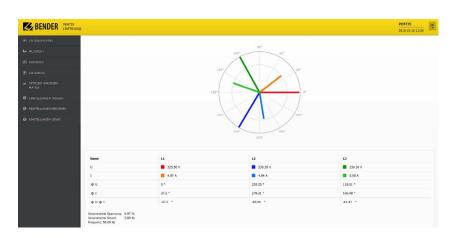


Abb. 3.1: Screenshot Zeigerdiagramm

3.2 Spannung U(L-N)

Spannung U_{LN}

Strangspannungen sowie U_4 und Durchschnittswert als Säulendiagramme. Wenn unter "Einstellungen Gerät / Anschluss" "Dreieck" konfiguriert ist, werden U(1-N), U(2-N), U(3-N), U(L-N)avg nicht angezeigt.

Abb. 3.2: Screenshot Strangspannungen

3.3 Spannung U(L-L)

Spannung $U_{\rm LL}$ Außenleiterspannungen und Durchschnittswert als Säulendiagramm.

Abb. 3.3: Screenshot Außenleiterspannungen

3.4 Strom

Ströme, I₄ und Durchschnittswert als Säulendiagramme.

Abb. 3.4: Screenshot Strom

3.5 Harmonische

Grafische und tabellarische Darstellung der individuellen Harmonischen 2...63 aufgeschlüsselt nach Spannungen und Strömen. Zur besseren Übersichtlichkeit kann die Darstellung der Quellen einzeln an- oder abgewählt werden. Tabellarische Darstellung THD, TEHD, TOHD aufgeschlüsselt nach Strömen und Spannungen.

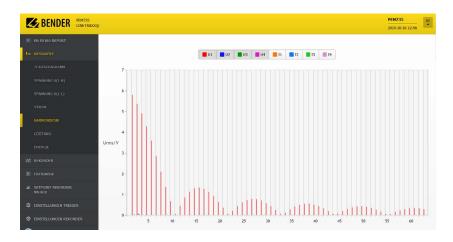


Abb. 3.5: Screenshot Harmonische

Der dargestellte Maßstab orientiert sich automatisch am größten Messwert.

Ob absolute oder relative Darstellung erfolgt, lässt sich unter "Einstellungen Gerät > Berechnungseinstellungen > Berechnung N-te Oberschwingung Strom" bzw. "... Spannung" einstellen (RMS oder Verzerrung).

3.6 Leistung

Darstellung der gemessenen Wirk- und Blindleistungen als Messwerte und als Vektoren in den Quadranten Q1...4. Die Leistungen werden sowohl als Gesamtmessung (Σ) sowie für die einzelnen Phasen U_{1...3} ausgegeben.

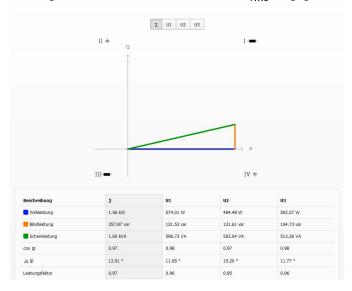


Abb. 3.6: Screenshot Leistung

3.7 Energie

Abb. 3.7: Screenshot Energie

Importieren= Bezug von EnergieExportieren= Abgabe von EnergieNetto= Import - ExportTotal= Import + Export

22

4. Rekorder

Zur Darstellung von Signalverläufen stehen drei verschiedene Rekorder zur Verfügung:

- Datenrekorder
- Highspeed-Datenrekorder
- Kurvenformrekorder

Die Konfiguration dieser 3 Rekordertypen wird im Menü "Einstellungen Rekorder" vorgenommen.

	Datenrekorder	Highspeed- Datenrekorder	Kurvenform- rekorder
minimaler Abstand zweier benachbarter Datenpunkte	1 s	1 Halb- schwingung	1/25600 s
maximaler Abstand zweier benachbarter Datenpunkte	3456000 s (= 40 Tage)	120 Halb- schwingungen	1/800 s
maximale Anzahl an Datenpunkten	65535	65535	10240
maximale Laufzeit	7182 Jahre (!)	50 Hz: 78642 s (= 21 h, 50 min, 42 s) 60 Hz: 65535 s (= 18 h, 12 min, 15 s))	12,8 s
Messgrößen	54; siehe Tabelle 8.2	29; siehe Tabelle 8.3	4 x U, 4 x I
Messwerte	Aufbereitete Werte wie RMS, Summen, Mittel- werte,	Aufbereitete Werte wie RMS, Summen, Mittel- werte,	Nur gemes- sene Momen- tanwerte

Tab. 4.1: Gegenüberstellung Rekordertypen

Für die detaillierte Analyse stehen folgende Bedienelemente zur Verfügung:

Darzustellende Messgröße wählen

Zunächst sind alle Messgrößen dargestellt. Die Darstellung kann übersichtlicher werden, wenn nicht alle Messgrößen gleichzeitig betrachtet werden. Durch Klicken auf die zugehörige Schaltfläche aktivieren bzw. deaktivieren Sie die Darstellung der Messgröße.

Einen Bereich der Kurve vergrößern

- Auf den Beginn des zu vergrößernden Bereichs klicken.
- Die linke Maustaste gedrückt halten.
- Den Mauszeiger bis zum Ende des zu betrachtenden Bereichs ziehen (grau hinterlegt) und loslassen.

Der ausgewählte Bereich wird sofort vergrößert angezeigt. Für eine noch stärkere Vergrößerung wiederholen Sie diesen Schritt.

Was?	Wie?
Auswahl Messwertebereich	Bei gedrückter linker Maustaste den Mauszeiger vertikal bewegen
Auswahl Zeitfenster	Bei gedrückter linker Maustaste den Mauszeiger horizontal bewegen
Anderes Zeitfenster in der Darstellung wählen	Bei gedrückter Shift-Taste die Kurvendarstellung mit der Maus nach rechts oder links verschieben
Anzeige der Messwerte (als Zahlenwerte)	In der Kurvendarstellung können Sie mit der Maus einzelne Messpunkte anfahren. Für diese sehen Sie in der Kopfzeile des Diagramms die Messwerte als Zahlenwerte.
Rückkehr zur ursprünglichen Darstellung	Doppelklick in die Kurvendarstellung

Tab. 4.2: Details in der Kurvendarstellung

4.1 Datenrekorder

Wählen Sie einen der 4 Highspeed-Datenrekorder oder der 16 Standard-Datenrekorder zur Anzeige aus.

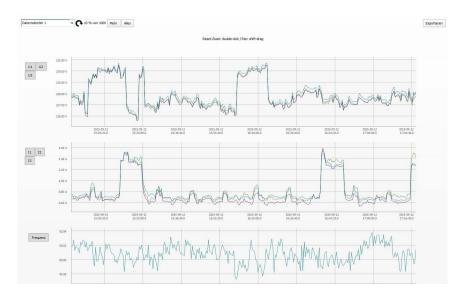


Abb. 4.1: Anzeige Datenrekorder

Je nach Einstellung der zu messenden Größen im Datenrekorder sehen die Bilder ganz unterschiedlich aus.

Exportieren: Die Werte des Datenrekorders werden als .csv-Datei exportiert und können so sehr detailliert analysiert werden. Es werden immer alle Daten exportiert, auch wenn in der Darstellung die Auswahl eingeschränkt wurde.

Mehr

Zur schnelleren Anzeige werden zunächst nur die neuesten gespeicherten Messwerte dargestellt. Möchten Sie ältere Datensätze anzeigen lassen, können Sie über diese Schaltfläche die nächste "Portion" Daten laden. Dies kann einige Sekunden dauern.

Alles

Alle gespeicherten Messwerte des DR werden geladen und angezeigt. Dies kann mehrere Minuten dauern.

4.2 Kurvenformrekorder

Der Kurvenformrekorder stellt auf einer gemeinsamen Zeitachse die Messwerte von Spannungen (links: Angabe in V) und Strömen (rechts: Angabe in A) dar.

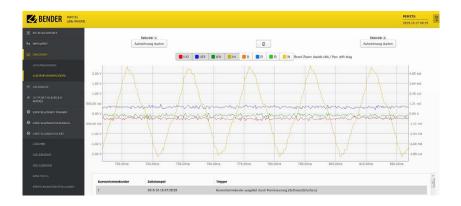


Abb. 4.2: Screenshot Kurvenformrekorder

Aufzeichnung starten: manuell den Kurvenformrekorder 1 oder 2 starten. Dieses Ereignis taucht nach Beenden der Aufzeichnung und Aktualisieren der Seite über den

Button in der Liste der Trigger und Zeitstempel auf.

Liste Trigger und Zeitstempel

Unter der Kurvendarstellung werden die Trigger der beiden Kurvenrekorder als Liste mit Zeitstempel und Ursache im Klartext dargestellt. Die Liste kann bis zu 128 Einträge erhalten.

Ein Klick auf eine Zeile in dieser Liste lädt den Datensatz und zeigt den Kurvenverlauf an.

5. Ereignisse

5.1 SOE-Log (Sequence Of Events)

In der Liste des SOE-Logs stehen die neuesten Ereignisse oben. Es werden bis zu 1024 Ereignisse gespeichert. Wenn die Historie nicht gelöscht wird, überschreibt das 1025. Ereignis das erste gespeicherte Ereignis (Ringspeicher, FIFO-Prinzip: first in, first out).

Die Ereignisse können in Gruppen zu 15 Einträgen angezeigt werden. Auswahl erfolgt über die Schaltfläche.

Das vollständige SOE-Log kann als .csv-Datei exportiert werden.

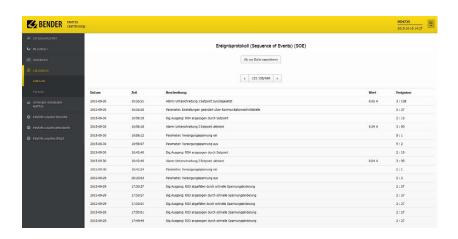


Abb. 5.1: Ereignisprotokoll SOE

Ereignisse

Code x:y ist der geräte-interne Ereignis-Code. In der folgenden Tabelle finden Sie die komplette Übersicht.

Übersicht geräte-interner Ereigniscodes

1. Zahl: Übersicht der Ereignisklassifizierung

Ereignis klassifizierung	Beschreibung
1	DI Status Änderung
2	Funktion DO/RO
3	Alarm
4	Selbsttest
5	Parameter Konfiguration via Kommunikationsschnittstelle oder Gerätetaster
6 Trigger Ereignisse	
7 Statusänderung <>-Setpoint durch Harmonische 263 (Spa	
8	Statusänderung <>-Setpoint durch Harmonische 263 (Strom)

2. Zahl: Ereignis-Unterklassifizierung

Ereignis- Klassifizierung	Ereignis- Unterklassi- fizierung	Bedeutung
	1	DI1 geschlossen/geöffnet
	2	DI2 geschlossen/geöffnet
	3	DI3 geschlossen/geöffnet
1	4	DI4 geschlossen/geöffnet
'	5	DI5 geschlossen/geöffnet
	6	DI6 geschlossen/geöffnet
	7	DI7 geschlossen/geöffnet
	8	DI8 geschlossen/geöffnet
2	1	RO1 angezogen/abgefallen durch Kommunikationsschnittstelle
2	2	RO2 angezogen/abgefallen durch Kommunikationsschnittstelle

Ereignis- Klassifizierung	Ereignis- Unterklassi- fizierung	Bedeutung
	3	RO3 angezogen/abgefallen durch Kommunikationsschnittstelle
	4	RO4 angezogen/abgefallen durch Kommunikationsschnittstelle
	5	DO1 geschlossen/geöffnet durch Kommunikationsschnittstelle
	6	DO2 geschlossen/geöffnet durch Kommunikationsschnittstelle
	7	RO1 angezogen/abgefallen durch Setpoint
	8	RO2 angezogen/abgefallen durch Setpoint
	9	RO3 angezogen/abgefallen durch Setpoint
	10	RO4 angezogen/abgefallen durch Setpoint
	11	DO1 geschlossen/geöffnet durch Setpoint
	12	DO2 geschlossen/geöffnet durch Setpoint
2	13	RO1 angezogen/abgefallen durch Spannungseinbruch/ -überhöhung
	14	RO2 angezogen/abgefallen durch Spannungseinbruch/ -überhöhung
	15	RO3 angezogen/abgefallen durch Spannungseinbruch/ -überhöhung
	16	RO4 angezogen/abgefallen durch Spannungseinbruch/ -überhöhung
	17	DO1 geschlossen/geöffnet durch Spannungseinbruch/- überhöhung
	18	DO2 geschlossen/geöffnet durch Spannungseinbruch/- überhöhung
	19	RO1 angezogen/abgefallen durch transientes Ereignis
	20	RO2 angezogen/abgefallen durch transientes Ereignis
	21	RO3 angezogen/abgefallen durch transientes Ereignis

Ereignis- Klassifizierung	Ereignis- Unterklassi- fizierung	Bedeutung
	22	RO4 angezogen/abgefallen durch transientes Ereignis
	23	DO1 geschlossen/geöffnet durch transientes Ereignis
	24	DO2 geschlossen/geöffnet durch transientes Ereignis
	25	RO1 angezogen/abgefallen durch schnelle Spannungs- änderung
	26	RO2 angezogen/abgefallen durch schnelle Spannungs- änderung
	27	RO3 angezogen/abgefallen durch schnelle Spannungs- änderung
2	28	RO4 angezogen/abgefallen durch schnelle Spannungs- änderung
_	29	DO1 geschlossen/geöffnet durch schnelle Spannungs- änderung
	30	DO2 geschlossen/geöffnet durch schnelle Spannungs- änderung
	31	RO1 angezogen/abgefallen durch Gerätetaster
	32	RO2 angezogen/abgefallen durch Gerätetaster
	33	RO3 angezogen/abgefallen durch Gerätetaster
	34	RO4 angezogen/abgefallen durch Gerätetaster
	35	DO1 geschlossen/geöffnet durch Gerätetaster
	36	DO2 geschlossen/geöffnet durch Gerätetaster
	1	>-Setpoint U_{LN} aktiviert
	2	>-Setpoint <i>U</i> _{LL} aktiviert
	3	>-Setpoint / aktiviert
3	4	>-Setpoint <i>U</i> ₄ aktiviert
	5	>-Setpoint I ₄ aktiviert
	6	>-Setpoint Δf aktiviert
	7	>-Setpoint P _{ges} aktiviert

Ereignis- Klassifizierung	Ereignis- Unterklassi- fizierung	Bedeutung
	8	>-Setpoint Q _{ges} aktiviert
	9	>-Setpoint S _{ges} aktiviert
	10	$>$ -Setpoint λ_{ges} aktiviert
	11	Setpoint DI1 schließen aktiv
	12	Setpoint DI2 schließen aktiv
	13	Setpoint DI3 schließen aktiv
	14	Setpoint DI4 schließen aktiv
	15	Setpoint DI5 schließen aktiv
	16	Setpoint DI6 schließen aktiv
	17	Setpoint DI7 schließen aktiv
	18	Setpoint DI8 schließen aktiv
	19	>-Setpoint Bedarf P _{ges} aktiviert
3	20	$>$ -Setpoint Bedarf Q_{ges} aktiviert
	21	>-Setpoint Bedarf S _{ges} aktiviert
	22	$>$ -Setpoint Bedarf λ_{ges} aktiviert
	23	>-Setpoint Prognose P _{ges} aktiviert
	24	>-Setpoint Prognose Q _{ges} aktiviert
	25	>-Setpoint Prognose S _{ges} aktiviert
	26	>-Setpoint Prognose λ _{ges} aktiviert
	27	>-Setpoint THD _U aktiviert
	28	>-Setpoint TOHD _U aktiviert
	29	>-Setpoint TEHD _U aktiviert
	30	>-Setpoint THD _I aktiviert
	31	>-Setpoint TOHD _I aktiviert
	32	>-Setpoint TEHD _I aktiviert

Ereignis- Klassifizierung	Ereignis- Unterklassi- fizierung	Bedeutung
	33	>-Setpoint Spannungsunsymmetrie U ₂ aktiviert
	34	$>$ -Setpoint Spannungsunsymmetrie U_0 aktiviert
	35	>-Setpoint Stromunsymmetrie I ₂ aktiviert
	36	>-Setpoint Stromunsymmetrie I ₀ aktiviert
	37	>-Setpoint Abweichung Spannung aktiviert
	38	>-Setpoint Phasenumkehr aktiviert
	3945	Reserviert
	46	>-Setpoint <i>U</i> _{LN} zurückgesetzt
	47	>-Setpoint <i>U</i> _{LL} zurückgesetzt
	48	>-Setpoint / zurückgesetzt
	49	>-Setpoint U_4 zurückgesetzt
	50	>-Setpoint I ₄ zurückgesetzt
3	51	>-Setpoint Δf zurückgesetzt
	52	>-Setpoint P _{ges} zurückgesetzt
	53	>-Setpoint Q _{ges} zurückgesetzt
	54	>-Setpoint S _{ges} zurückgesetzt
	55	$>$ -Setpoint λ_{ges} zurückgesetzt
	56	Setpoint DI1 schließen zurückgesetzt
	57	Setpoint DI2 schließen zurückgesetzt
	58	Setpoint DI3 schließen zurückgesetzt
	59	Setpoint DI4 schließen zurückgesetzt
	60	Setpoint DI5 schließen zurückgesetzt
	61	Setpoint DI6 schließen zurückgesetzt
	62	Setpoint DI7 schließen zurückgesetzt
	63	Setpoint DI8 schließen zurückgesetzt

Ereignis- Klassifizierung	Ereignis- Unterklassi- fizierung	Bedeutung
	64	>-Setpoint Bedarf P _{ges} zurückgesetzt
	65	$>$ -Setpoint Bedarf $Q_{\rm ges}$ zurückgesetzt
	66	>-Setpoint Bedarf S _{ges} zurückgesetzt
	67	>-Setpoint Bedarf \(\lambda_{ges} \) zur\(\text{uckgesetzt} \)
	68	>-Setpoint Prognose P _{ges} zurückgesetzt
	69	>-Setpoint Prognose Q _{ges} zurückgesetzt
	70	>-Setpoint Prognose S _{ges} zurückgesetzt
	71	>-Setpoint Prognose λ _{ges} zurückgesetzt
	72	>-Setpoint THD _U zurückgesetzt
	73	>-Setpoint TOHD _U zurückgesetzt
	74	>-Setpoint TEHD _U zurückgesetzt
	75	>-Setpoint THD _I zurückgesetzt
3	76	>-Setpoint TOHD _I zurückgesetzt
	77	>-Setpoint TEHD _I zurückgesetzt
	78	$>$ -Setpoint Spannungsunsymmetrie U_2 zurückgesetzt
	79	$>$ -Setpoint Spannungsunsymmetrie U_0 zurückgesetzt
	80	>-Setpoint Stromunsymmetrie I ₂ zurückgesetzt
	81	>-Setpoint Stromunsymmetrie I ₀ zurückgesetzt
	82	>-Setpoint Abweichung Spannung zurückgesetzt
	83	>-Setpoint Phasenumkehr zurückgesetzt
	8490	Reserviert
	91	<-Setpoint U_{LN} unterschritten
	92 2	<-Setpoint U_{LL} unterschritten
	93	<-Setpoint / unterschritten

Ereignis- Klassifizierung	Ereignis- Unterklassi- fizierung	Bedeutung
	94	<-Setpoint U ₄ unterschritten
	95	<-Setpoint I ₄ unterschritten
	96	<-Setpoint Δf unterschritten
	97	<-Setpoint P _{ges} unterschritten
	98	<-Setpoint Q _{ges} unterschritten
	99	<-Setpoint S _{ges} unterschritten
	100	<-Setpoint λ_{ges} unterschritten
	101	Setpoint DI1 öffnen aktiv
	102	Setpoint DI2 öffnen aktiv
	103	Setpoint DI3 öffnen aktiv
	104	Setpoint DI4 öffnen aktiv
	105	Setpoint DI5 öffnen aktiv
3	106	Setpoint DI6 öffnen aktiv
	107	Setpoint DI7 öffnen aktiv
	108	Setpoint DI8 öffnen aktiv
	109	<-Setpoint Bedarf P _{ges} unterschritten
	110	$<$ -Setpoint Bedarf $Q_{ m ges}$ unterschritten
	111	<-Setpoint Bedarf S _{ges} unterschritten
	112	<-Setpoint Bedarf λ_{ges} unterschritten
	113	<-Setpoint Prognose P _{ges} unterschritten
	114	<-Setpoint Prognose Q _{ges} unterschritten
	115	<-Setpoint Prognose S _{ges} unterschritten
	116	<-Setpoint Prognose λ_{ges} unterschritten
	117	<-Setpoint THD _U unterschritten
	118	<-Setpoint TOHD _U unterschritten

Ereignis- Klassifizierung	Ereignis- Unterklassi- fizierung	Bedeutung
	119	<-Setpoint TEHD _U unterschritten
	120	<-Setpoint THD _I unterschritten
	121	<-Setpoint TOHD _I unterschritten
	122	<-Setpoint TEHD _I unterschritten
	123	$<$ -Setpoint Spannungsunsymmetrie U_2 unterschritten
	124	$<$ -Setpoint Spannungsunsymmetrie U_0 unterschritten
	125	<-Setpoint Stromunsymmetrie I ₂ unterschritten
	126	$<$ -Setpoint Stromunsymmetrie I_0 unterschritten
	127	<-Setpoint Abweichung Spannung unterschritten
	128135	Reserviert
	136	<-Setpoint U _{LN} zurückgesetzt
3	137	<-Setpoint $U_{\rm LL}$ zurückgesetzt
3	138	<-Setpoint / zurückgesetzt
	139	<-Setpoint U_4 zurückgesetzt
	140	<-Setpoint I ₄ zurückgesetzt
	141	<-Setpoint Δf zurückgesetzt
	142	<-Setpoint P _{ges} zurückgesetzt
	143	<-Setpoint Q _{ges} zurückgesetzt
	144	<-Setpoint S _{ges} zurückgesetzt
	145	$<$ -Setpoint λ_{ges} zurückgesetzt
	146	Setpoint DI1 öffnen zurückgesetzt
	147	Setpoint DI2 öffnen zurückgesetzt
	148	Setpoint DI3 öffnen zurückgesetzt
	149	Setpoint DI4 öffnen zurückgesetzt

Ereignis- Klassifizierung	Ereignis- Unterklassi- fizierung	Bedeutung
	150	Setpoint DI5 öffnen zurückgesetzt
	151	Setpoint DI6 öffnen zurückgesetzt
	152	Setpoint DI7 öffnen zurückgesetzt
	153	Setpoint DI8 öffnen zurückgesetzt
	154	<-Setpoint Bedarf P _{ges} zurückgesetzt
	155	<-Setpoint Bedarf Q _{ges} zurückgesetzt
	156	<-Setpoint Bedarf S _{ges} zurückgesetzt
	157	<-Setpoint Bedarf λ_{ges} zurückgesetzt
	158	<-Setpoint Prognose P _{ges} zurückgesetzt
	159	<-Setpoint Prognose Q _{ges} zurückgesetzt
	160	<-Setpoint Prognose S _{ges} zurückgesetzt
	161	<-Setpoint Prognose λ _{ges} zurückgesetzt
3	162	<-Setpoint THD _U zurückgesetzt
	163	<-Setpoint TOHD _U zurückgesetzt
	164	<-Setpoint TEHD _U zurückgesetzt
	165	<-Setpoint THD _I zurückgesetzt
	166	<-Setpoint TOHD _I zurückgesetzt
	167	<-Setpoint TEHD _I zurückgesetzt
	168	$<$ -Setpoint Spannungsunsymmetrie U_2 zurückgesetzt
	169	$<$ -Setpoint Spannungsunsymmetrie U_0 zurückgesetzt
	170	<-Setpoint Stromunsymmetrie I ₂ zurückgesetzt
	171	<-Setpoint Stromunsymmetrie I ₀ zurückgesetzt
	172	<-Setpoint Abweichung Spannung zurückgesetzt
	173	Reserviert

Ereignis- Klassifizierung	Ereignis- Unterklassi- fizierung	Bedeutung	
	1	DSP-Fehler	
	2	AD-Fehler	
	3	Reserviert	
	4	Reserviert	
	5	NVRAM-Fehler	
	6	Fehler FRAM-Speicher	
	7	Systemparameter-Fehler	
	8	Setpoint Parameter-Fehler	
4	9	Fehler Parameter Datenrekorder	
4	10	Fehler Parameter Kurvenformrekorder	
	11	Fehler Parameter PQ-Speicher	
	12	Fehler Parameter Energiespeicher	
	13	Fehler Parameter EN 50160-Speicher	
	14	Reserviert	
	15	Störsignalrekorder Parameter Fault	
	16	Reserviert	
	17	Fehler interner Parameter	
	18	Fehler Parameter Kommunikation	
	1	Versorgungsspannung ein	
	2	Versorgungsspannung aus	
	3	Uhr gestellt über Gerätetasten	
5	4	Setup geändert über Gerätetasten	
	5	Reserviert	
	6	Kommunikationsparameter geändert über Gerätetasten	
	79	Reserviert	
	10	Zähler DI gelöscht über Gerätetasten	

Ereignis- Klassifizierung	Ereignis- Unterklassi- fizierung	Bedeutung	
	11	Ereignisspeicher gelöscht über Gerätetasten	
	12	PQ-Speicher gelöscht über Gerätetasten	
	13	Energiewerte gelöscht über Gerätetasten	
	14	Datenrekorder gelöscht über Gerätetasten	
	15	Kurvenformrekorder gelöscht über Gerätetasten	
	16	Reserviert	
	17	Reserviert	
	18	Energiespeicher gelöscht über Gerätetasten	
	19	Speicher Max-/Min-Werte des aktuellen Monats gelöscht über Gerätetasten	
	20	Reserviert	
	21	Spitzenbedarf des aktuellen Monats gelöscht über Gerätetasten	
5	2224	Reserviert	
	25	PQ-Ereignis gelöscht über Gerätetasten	
	26	alle Speicher und Statistiken gelöscht über Gerätetasten	
	27	Setup geändert durch Kommunikationsschnittstelle	
	28	interne Parameter gesetzt über Kommunikations- schnittstelle	
	29	Kommunikationsparameter gesetzt über Kommunikationsschnittstelle	
	30	Zähler DI gesetzt über Kommunikationsschnittstelle	
	31	Ereignisspeicher gesetzt über Kommunikationsschnittstelle	
	32	Reserviert	
	33	Zähler DI gelöscht über Kommunikationsschnittstelle	
	34	Ereignisspeicher gelöscht über Kommunikationsschnittstelle	

Ereignis- Klassifizierung	Ereignis- Unterklassi- fizierung	Bedeutung			
	35	PQ-Speicher gelöscht über Kommunikationsschnitt- stelle			
	36	Energiewerte gelöscht durch Kommunikationsschnittstelle			
	37	Datenrekorder gelöscht durch Kommunikationsschnittstelle			
	38	Kurvenformrekorder gelöscht durch Kommunikations- schnittstelle			
	39	Reserviert			
	40	Transientenspeicher gelöscht durch Kommunikationsschnittstelle			
	41	Energiespeicher gelöscht durch Kommunikationsschnittstelle			
5	42	Speicher Max-/Min-Werte des aktuellen Monats gelöscht durch Kommunikationsschnittstelle			
-	43	alle Max-/Min-Werte gelöscht durch Kommunikationsschnittstelle			
	44	Spitzenbedarf des aktuellen Monats gelöscht durch Kommunikationsschnittstelle			
	45	alle Werte Spitzenbedarf gelöscht durch Kommunikationsschnittstelle			
	46	EN 50160-Speicher gelöscht durch Kommunikationsschnittstelle			
	47	Reserviert			
	48	PQ-Ereignis gelöscht über Kommunikationsschnittstelle			
	49	alle Speicher und Statistiken löschen über Kommunikationsschnittstelle			
	50	Reserviert			
	51	Reserviert			

Ereignis- Klassifizierung	Ereignis- Unterklassi- fizierung	Bedeutung	
	1	Kurvenformrekorder getriggert durch Kommunikations- schnittstelle	
	2	Kurvenformrekorder getriggert durch Setpoint	
	3	Kurvenformrekorder getriggert durch Spannungsein- bruch/-überhöhung	
	4	Kurvenformrekorder getriggert durch Transiente	
	5	Kurvenformrekorder getriggert durch schnelle Span- nungsänderung	
	6	Datenrekorder (Standard) getriggert durch Setpoint	
	7	Datenrekorder (Standard) getriggert durch Spannungs- einbruch/-überhöhung	
	8	Reserviert	
	9	Reserviert	
6	10	Datenrekorder (Highspeed) getriggert durch Setpoint	
	11	Datenrekorder (Highspeed) getriggert durch Span- nungseinbruch/-überhöhung	
	12	Reserviert	
	13	Reserviert	
	14	Alarm-E-Mail getriggert durch Setpoint	
	15	Alarm-E-Mail getriggert durch Spannungseinbruch/- überhöhung	
	16	Alarm-E-Mail getriggert durch Transiente	
	17	Alarm-E-Mail getriggert durch schnelle Spannungs- änderung	
	1922	Reserviert	
	23	Störsignalrekorder getriggert durch Kommunikations- schnittstelle	
	24	Störsignalrekorder getriggert durch Setpoint	

Ereignis- Klassifizierung	Ereignis- Unterklassi- fizierung	Bedeutung	
	25	Störsignalrekorder getriggert durch Spannungsein- bruch/-überhöhung	
6	26	Störsignalrekorder getriggert durch Transienten-Störung	
	27	Störsignalrekorder getriggert durch schnelle Spannungsänderung	
	28	Störsignalrekorder Aufzeichnung beendet	
	1	>-HD2 _U aktiv	
	62	>-HD63 _U aktiv	
	63	>-HD2 _U zurückgesetzt	
7	124	>-HD63 _U zurückgesetzt	
/	125	<-HD2 _U aktiv	
	186	<-HD63 _U aktiv	
	187	<-HD2 _U zurückgesetzt	
	248	<-HD63 _U zurückgesetzt	
	1	>-HD2 _l aktiv	
	•••		
	62	>-HD63 _l aktiv	
8	63	>-HD2 _I zurückgesetzt	
-			
	124	>-HD63 _I zurückgesetzt	
	125	<-HD2 _I aktiv	
	•••		

Ereignis- Klassifizierung	Ereignis- Unterklassi- fizierung	Bedeutung	
	186	<-HD63 _l aktiv	
8	187	<-HD2 _I zurückgesetzt	
	248	<-HD63 ₁ zurückgesetzt	

Tab. 5.1: Ereignis-Unterklassifizierung (SOE)

5.2 PQ-Log (Netzqualität)

In der Liste stehen die neuesten PQ-Ereignisse oben. Es werden bis zu 1024 Ereignisse gespeichert. Wenn das PQ-Log nicht gelöscht wird, überschreibt das Ereignis 1025 das erste gespeicherte Ereignis (Ringspeicher, FIFO-Prinzip: first in, first out).

Die Ereignisse können in Gruppen zu 15 Einträgen angezeigt werden. Auswahl über die Schaltfläche. Weiterhin kann das PQ-Log als .csv-Datei (comma separated values) exportiert werden.

Die Erklärung der Ereignisklassifizierungen (x:y) findet sich in Tabelle 5.2.

Klassifikation PQ-Log

Das Gerät klassifiziert die PQ-Logs in 4 Klassen, die wiederum in Unterklassen aufgeteilt sind. Die Tabelle zeigt die möglichen PQ-Ereignisklassifikationen.

Klassifikation PQ-Log

PQ-Log Klassifikation	Unter- klassifikation	Beschreibung Deschreibung	
	1	Beginn Spannungsüberhöhung	
	2	Ende Spannungsüberhöhung	
1. Spannungs-	3	Beginn Spannungseinbruch	
überhöhung/	4	Ende Spannungseinbruch	
Spannungseinbruch	5	Beginn Spannungsunterbrechung	
	6	Ende Spannungsunterbrechung	
	7	Störungsursache	
2. Transientes Ereignis	1	Transientes Ereignis wurde erfasst	
	1	Schnelle Spannungsänderung $U_{\rm L1}$	
3. Schnelle Span- nungsänderung	2	Schnelle Spannungsänderung $U_{\rm L2}$	
nangsanacrang	3	Schnelle Spannungsänderung U _{L3}	
	1	Beginn Netz-Signalübertragungsspannung Frequenz 1	
	2	Ende Netz-Signalübertragungsspannung Frequenz 1	
4. Netz- Signalübertragungs-	3	Beginn Netz-Signalübertragungsspannung Frequenz 2	
spannung	4	Ende Netz-Signalübertragungsspannung Frequenz 2	
	5	Beginn Netz-Signalübertragungsspannung Frequenz 3	
	6	Ende Netz-Signalübertragungsspannung Frequenz 3	

Tab. 5.2: Ereignisklassifizierung PQ-Log

6. Setpoint-Rekorder-Matrix

In der Setpoint-Rekorder-Matrix werden die getroffenen Einstellungen für die

- Kurvenformrekorder WFR1...2
- Highspeed-Datenrekorder HS-DR1...4
- Datenrekorder DR1...16
- Relaisausgänge RO1...4
- Digitalen Ausgänge DO1...2

dargestellt. Auf einen Blick wird so deutlich, falls es bei den Einstellungen Widersprüche gibt.

Einstellungen Rekorder > Datenrekorder bzw.

Highspeed-Datenrekorder bzw.

Kurvenformrekorder

Alle Trigger (Standard-Setpoint, Highspeed-Setpoint, Spannungseinbruch und -überhöhung, Transienten, schnelle Spannungsänderungen) können Rekorder und/oder Ausgänge aktivieren, wenn die festgelegten Bedingungen erfüllt sind. Festgelegt werden die Bedingungen unter dem Menüpunkt "Einstellungen Trigger".

Verwendete Symbole in der Setpoint-Rekorder-Matrix

Element	Bedeutung	
	rote Zeile: Setpoint ist ausgeschaltet	
	Einstellung nicht möglich	
O _G	zu den Einstellungen des Setpoints/Rekorders wechseln	
~	Rekorder-Einstellungen korrekt	
A	Rekorder-Einstellungen fehlerhaft	
Т	Trigger: Timer	
SP	Trigger: Setpoint	
aus	Rekorder ist nicht aktiviert	

Tab. 6.1: Symbole in der Setpoint-Rekorder-Matrix

Beispiel Setpoint-Rekorder-Matrix

Abb. 6.1: Beispiel Setpoint-Rekorder-Matrix

Erläuterungen Abbildung 6.1:

Im Beispiel zeigt die Setpoint-Rekorder-Matrix Fehlkonfigurationen der Setpoints und Rekorder.

- Setpoint SAG/SWELL kann DR2 nicht triggern, da DR2 ausgeschaltet ist.
- Highspeed-Setpoint 2 kann HS-DR4 nicht triggern, da HS-DR4 ausgeschaltet ist.
- Highspeed-Setpoint 4 kann HS-DR2 nicht triggern, da HS-DR2 ausgeschaltet ist.
- Standard Setpoint 2 kann DR1 nicht triggern, da DR1 als Timer konfiguriert ist
- Standard Setpoint 3 kann HS-DR2 nicht triggern, da HS-DR2 ausgeschaltet ist.
- Standard-Setpoint 6 ist zwar korrekt für DR10 und DR12 konfiguriert, aber ausgeschaltet.

7. Einstellungen Trigger

Sobald ein Trigger (Standard-Setpoint, Highspeed-Setpoint, Spannungsüberhöhung, -einbruch und -unterbrechung, Transienten, schnelle Spannungsänderung) einen DO aktivieren soll, muss für diesen DO der Modus "Fernsteuerung/Alarm" eingestellt werden.

7.1 Standard-Setpoint

PEM735 hat 24 vom Benutzer frei programmierbare Standard-Setpoints, die eine umfassende Steuerung der Reaktion auf festgelegte Ereignisse bieten. Typische Anwendungen für Setpoints sind Alarmierungen, Fehlererfassung und Anzeige der Netzgualität (PQ-Monitoring).

Zunächst wählen Sie den Standard-Setpoint 1...24. Für jeden Setpoint sind dann folgende Einstellungen möglich:

Funktion

Legt die Art der Ermittlung fest:

- Setpoint ausgeschaltet
- Wertüberschreitung >
- Wertunterschreitung <

Parameter

Legt die zu überwachenden Messgrößen fest. Einstellmöglichkeiten:

U_{LN}	U_{LL}	1
U_4	14	Frequenzabweichung
Pges	Qges	S_{ges}
λ_{ges}	DI18	
Bedarf P _{ges}	Bedarf Q _{ges}	Bedarf S _{ges}
Bedarf λ_{ges}	Prognose P _{ges}	Prognose Q _{ges}
Prognose S _{ges}	Prognose λ _{ges}	THD _U
TOHD _U	TEHD _U	THD _I
TOHD _I	TEHD _I	Unsymmetrie U: Gegensystem
Unsymmetrie U: Nullsystem	Unsymmetrie I: Gegensystem	Unsymmetrie I: Nullsystem
Spannungsabweichung	Phasenfolge	

Tab. 7.1: Messgrößen für Standard-Setpoint

Obere Grenze

Obere Grenzen für Setpoint festlegen.

Untere Grenze

Untere Grenzen für Setpoint festlegen.

Der Wert der oberen Grenze muss stets größer sein als der Wert der unteren Grenze!

Ansprechverzögerung ton

Legt die minimale Zeitspanne fest, die ein Wert den Schwellenwert verletzt haben muss, um eine Aktion auszulösen. Jede Statusänderung eines Setpoints generiert einen Eintrag im Ereignisspeicher. Die Angabe der Ansprechverzögerung kann für Standard-Setpoints einen Wert von 0...9.999 Sekunden einnehmen.

Rückfallverzögerung toff

Legt die minimale Zeitspanne fest, die ein Wert die Bedingungen für die Rückkehr in den Normalzustand erfüllt haben muss. Jede Statusänderung eines Setpoints generiert einen Eintrag im Ereignisspeicher. Die Angabe der Rückfallverzögerung kann für Standard-Setpoints einen Wert von 0...9.999 Sekunden einnehmen.

Trigger 1...2

Einstellmöglichkeiten:

- aus
- Relais1...4
- DO 1...2
- Highspeed-Datenrekorder 1...4
- Standard-Datenrekorder 1...16
- Kurvenformrekorder1...2

7.2 Highspeed-Setpoint

PEM735 hat 8 vom Benutzer frei programmierbare Highspeed-Setpoints, die eine umfassende Steuerung der Reaktion auf festgelegte Ereignisse bieten.

Typische Anwendungen für Setpoints sind Alarmierungen, Fehlererfassung und Anzeige der Netzqualität (PQ-Monitoring).

Zunächst wählen Sie den Highspeed-Setpoint 1...8. Für jeden Setpoint sind dann folgende Einstellungen möglich:

Funktion

Legt die Art der Ermittlung fest:

- Setpoint ausgeschaltet
- Wertüberschreitung >
- Wertunterschreitung <

Parameter

Legt die zu überwachenden Messgrößen fest. Einstellmöglichkeiten:

U_{LN}	U _{LL}	1
U_4	14	
Frequenzabweichung	P_{ges}	Q_{ges}
S_{ges}	λ_{ges}	DI18

Tab. 7.2: Messgrößen für Highspeed-Setpoints

Obere Grenze

Obere Grenzen für Setpoint festlegen.

Untere Grenze

Untere Grenzen für Setpoint festlegen.

Der Wert der oberen Grenze muss stets größer sein als der Wert der unteren Grenze!

Ansprechverzögerung ton

Legt die minimale Zeitspanne fest, die ein Wert den Schwellenwert verletzt haben muss, um eine Aktion auszulösen.

Jede Statusänderung eines Setpoints generiert einen Eintrag im Ereignisspeicher. Für Highspeed-Setpoints sind Werte von 0...9.999 Vollschwingungen möglich.

Rückfallverzögerung toff

Legt die minimale Zeitspanne fest, die ein Wert die Bedingungen für die Rückkehr in den Normalzustand erfüllt haben muss. Jede Statusänderung eines Setpoints generiert einen Eintrag im Ereignisspeicher.

Für Highspeed-Setpoints sind Werte von 0...9.999 Vollschwingungen möglich.

Trigger 1...2

Einstellmöglichkeiten:

- aus
- Relais1...4
- DO 1...2
- Highspeed-Datenrekorder 1...4
- Standard-Datenrekorder 1...16
- Kurvenformrekorder1...2

7.3 SAG/SWELL

Überwachung Unter-/Überspannung

Einstellmöglichkeiten: ein, aus

Referenzspannung

Einstellmöglichkeiten: Nennspannung, gleitende Referenzspannung

Nennspannung: Nenn-Außenleiterspannung

Gleitende Referenzspannung: Die gleitende Referenzspannung wird mit einem Filter erster Ordnung und einer Zeitkonstanten von einer Minute berechnet.

Ansprechwert Überspannung

Einstellmöglichkeiten: 101...200 %

Hysterese Überspannung

Einstellmöglichkeiten: 0,1...100 %

Ansprechwert Unterspannung

Einstellmöglichkeiten: 1...99 %

Hysterese Unterspannung

Einstellmöglichkeiten: 0,1...100 %

Grenzwert Spannungsunterbrechung

Einstellmöglichkeiten: 0...50 %

Hysterese Spannungsunterbrechung

Einstellmöglichkeiten: 0,1...100 %

Trigger 1...2

Einstellmöglichkeiten:

- aus
- Relais 1...4
- DO 1...2
- Highspeed-Datenrekorder 1...4
- Standard-Datenrekorder 1...16
- Kurvenformrekorder 1...2

7.4 Transienten

Einstellmöglichkeiten: aus, ein

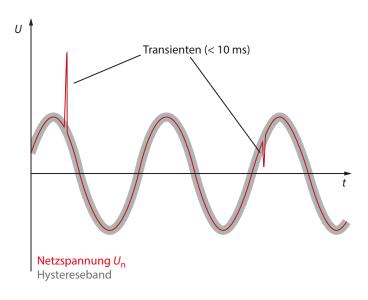
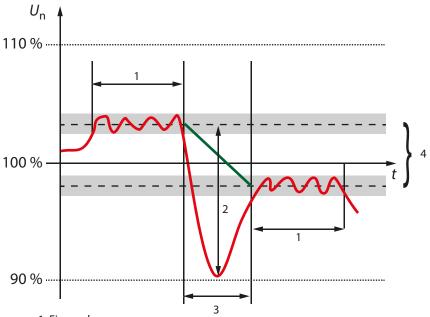


Abb. 7.1: Schematische Darstellung Transienten

Transienten Ansprechwert

Einstellmöglichkeiten: 5...500 %

Trigger 1...2


Einstellmöglichkeiten:

- aus
- Relais 1...4
- DO 1...2
- Kurvenformrekorder1...2

7.5 Schnelle Spannungsänderungen

Einstellmöglichkeiten: aus, ein

- 1: Eingeschwungen
- 2: Max. Spannungsänderung
- 3: Einschwingdauer
- 4: Δ U > minimaler Spannungsunterschied
- : Toleranzfenster Spannung stabiler Zustand
 - : Spannungsänderungsgeschwindigkeit

Abb. 7.2: Schnelle Spannungsänderungen

Minimale Spannungsänderungsgeschwindigkeit

Einstellmöglichkeiten: $0...100 \% U_n/s$

Minimale Einschwingdauer

Einstellmöglichkeiten: 0,1...5 s

Minimaler Spannungsunterschied

Einstellmöglichkeiten: 0...100 %

Toleranzfenster Spannung stabiler Zustand

Einstellmöglichkeiten: 0...100 %

Erkennungsmodus

Einstellmöglichkeiten:

- Eingeschwungen
- Maximale Spannungsänderung

Trigger 1...2

Einstellmöglichkeiten:

- aus
- Relais1...4
- DO 1...2
- Kurvenformrekorder1...2

8. Einstellungen Rekorder

8.1 Datenrekorder

Wählen Sie zunächst den zu konfigurierenden Datenrekorder DR1...16 aus.

Dauer

Die Gesamtaufzeichnungsdauer ergibt sich aus der aktuellen Konfiguration des Datenrekorders.

Ausgelöst durch

Trigger einstellen;

Auswahlmöglichkeit: disabled, Timer, digitaler Setpoint

Bei Datenrekordereinstellung "Ausgelöst durch digitalen Setpoint" muss bei den Setpointeinstellungen (siehe Einstellungen Trigger) der entsprechende Datenrekorder ebenfalls ausgewählt werden!

Überschreiben

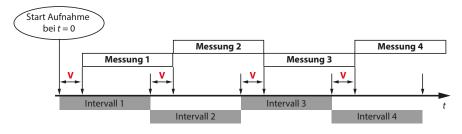
Sollen die ältesten Einträge mit neuen Einträgen überschrieben werden, wenn der Speicher voll ist (FIFO)?

Auswahlmöglichkeit: ja, nein

Ausgelöst durch	Überschreiben: ja	Überschreiben: nein	
Digitaler Setpoint	Setpoint aktiv: Aufnahme Setpoint inaktiv: Aufnahme stoppt Setpoint aktiv: Aufnahme Setpoint inaktiv: Aufnahme stoppt usw. Zeitliche Lücken zwischen Datenpunkten möglich!	Aufnahme stoppt bei Erreichen	
Timer	Timer erreicht: Aufnahme Aufnahme stoppt bei Deaktivieren des Datenrekorders.	Timer erreicht: Aufnahme Aufnahme stoppt bei Erreichen der eingestellten Anzahl Daten- punkte.	

Tab. 8.1: Verhalten Datenrekorder bei "Überschreiben ja/nein"

Datenpunkte


Pro Messgröße aufgezeichnete Anzahl an Messungen. Einstellbereich 0...65535

Intervall

Zeit zwischen zwei Datenpunkten 1...3456000 s

Verzögerung

Eine Verzögerung ist nur konfigurierbar für "Ausgelöst durch Timer". Eine Verzögerung muss stets kleiner sein als das ausgewählte Intervall.

V = Verzögerung

Abb. 8.1: Schematische Darstellung: Verzögerung Datenrekorder

Die Aufnahme beginnt mit t = 0 bei Speichern der Datenrekorder-Konfiguration.

Anzahl Parameter

Anzahl der Messgrößen festlegen, die aufgezeichnet werden sollen. Einstellbereich 0...16.

Parameter 1...16

Hier wird festgelegt, welche Messgrößen erfasst werden sollen. Auswahlmöglichkeiten:

U _{L13}	U _{LN avg}	U_{L1L2}	U_{L2L3}
U_{L3L1}	U _{LL avg}	I ₁₃	l _{avg}
U_4	14	P ₁₃	P_{ges}
Q ₁₃	Q_{ges}	S ₁₃	S_{ges}
λ ₁₃	λ_{ges}	f	Bedarf I ₁₃
Bedarf I _{avg}	Bedarf I ₄	Bedarf P _{ges}	Bedarf Q _{ges}
Bedarf S _{ges}	Bezug Wirkenergie	Export Wirkenergie	Gesamt- Wirkenergie
Nettowirkenergie	Bezug Blindenergie	Export Blindenergie	Gesamt- Blindenergie
Nettoblindenergie	Scheinenergie	Pst ₁₃	Plt ₁₃

Tab. 8.2: Messgrößen Datenrekorder

8.2 Highspeed-Datenrekorder

Wählen Sie zunächst den Highspeed-Datenrekorder HS-DR1...4 zur Konfiguration aus.

Dauer

Die Gesamtaufzeichnungsdauer ergibt sich aus der aktuellen Konfiguration des Highspeed-Datenrekorders.

Ausgelöst durch

Trigger einstellen;

Auswahlmöglichkeit: disabled, Timer, digitaler Setpoint

Bei Highspeed-Datenrekordereinstellung "Ausgelöst durch digitalen Setpoint" muss bei den Setpointeinstellungen (siehe Einstellungen Trigger) der entsprechende Highspeed-Datenrekorder ebenfalls ausgewählt werden!

Datenpunkte

Pro Messgröße aufgezeichnete Anzahl an Messungen. Einstellbereich 0...65535

Intervall

Halbschwingungen je Datenpunkt 1...120

Verzögerung

Eine Verzögerung ist nur konfigurierbar für "Ausgelöst durch Timer".

Einstellungen der Verzögerung der Highspeed-Datenrekorder nur an deaktivierten Rekordern vornehmen!

Rekorder deaktivieren:

Einstellungen Rekorder > Highspeed-Datenrekorder > Ausgelöst durch > "Disabled"

Die eingestellte Verzögerung läuft einmalig ab. Nach dieser Zeitspanne wird die Anzahl konfigurierter Datenpunkte mit dem Intervallabstand aufgenommen. Ein automatisches Überschreiben (wie bei den Standard-Rekordern) ist hier nicht möglich.

Wurde der Highspeed-Datenrekorder vorher bereits genutzt, können noch alte Daten vorhanden sein. Diese sind bis zum Beginn der Aufnahme abrufbar (unter "Rekorder > Datenrekorder").

Anzahl Parameter

Anzahl der Messgrößen festlegen, die aufgezeichnet werden sollen. Einstellbereich 0...16.

Parameter 1...16

Hier wird festgelegt, welche Messgrößen erfasst werden sollen. Auswahlmöglichkeiten:

U _{L13}	U _{LN avg}	U_{L1L2}	U_{L2L3}	U_{L3L1}
U _{LL avg}	I ₁₃	I _{avg}	U_4	14
P ₁₃	P_{ges}	Q ₁₃	Q_{ges}	S ₁₃
S_{ges}	λ ₁₃	λ_{ges}	f	

Tab. 8.3: Messgrößen Highspeed-Datenrekorder

8.3 Kurvenformrekorder

PEM735 hat zwei voneinander unabhängige Kurvenformrekorder (Waveform Recorder WFR), die zusammen 128 Einträge aufzeichnen können. Jeder WFR kann gleichzeitig vierphasig Spannung und Strom mit einer maximal möglichen Auflösung von 512 Stützstellen pro Vollschwingung erfassen.

WFR können getriggert werden durch

- Setpoints
- Spannungseinbruch, -überhöhung, -unterbrechung
- Transiente Ereignisse
- Kommunikationsschnittstelle (manuell)

Hierbei hat die Steuerung über die Kommunikationsschnittstelle die höchste Priorität. Während einer Aufzeichnung werden weitere WFR-Trigger ignoriert.

Die Speicherung erfolgt nach dem FIFO-Prinzip (first in, first out), und zwar für jeden Kurvenformrekorder separat. Hat ein WFR seine maximale Aufnahmeanzahl erreicht, so überschreibt die nächste Aufnahme die älteste gespeicherte.

WFR-Daten werden im permanenten Speicher abgelegt, so dass die Daten auch bei einer Spannungsunterbrechung nicht verloren gehen.

Dauer

Die Gesamtaufzeichnungsdauer ergibt sich aus der aktuellen Konfiguration des Kurvenformrekorders.

Folgende Setup-Parameter werden unterstützt

Kurvenformrekorder 1...2: Aufnahmen

Aufnahmen WFR1 + Aufnahmen WFR2 ≤ 128 Die verbleibenden möglichen Aufnahmen werden automatisch angepasst, sobald ein Wert für einen WFR festgelegt wurde.

Kurvenformrekorder 1...2: Anzahl Vollschwingungen vor Ereignis Einstellmöglichkeiten: 2...192

Kurvenformrekorder 1...2: Vollschwingungen pro Aufnahme

Einstellmöglichkeiten: 20, 40, 80, 160, 320, 640

Voll- schwingungen pro Aufnahme	Abtast- frequenzen	Datenpunkte pro Vollschwingung	Voll- schwingungen vor Ereignis	Aufnahme- dauer
20	25600 Hz	512	26	0,4 s
40	12800 Hz	256	212	0,8 s
80	6400 Hz	128	224	1,6 s
160	3200 Hz	64	248	3,2 s
320	1600 Hz	32	296	6,4 s
640	800 Hz	16	2192	12,8 s

Tab. 8.4: Konfiguration Kurvenformrekorder

Bei Änderung der Einstellungen eines Kurvenformrekorders wird die zugeordnete Historie gelöscht.

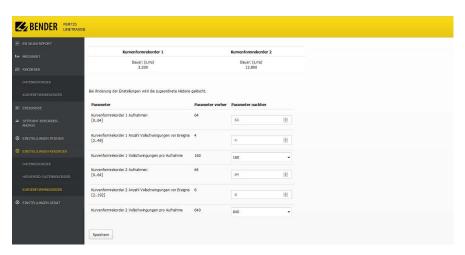


Abb. 8.2: Screenshot: Einstellungen Rekorder > Kurvenformrekorder

9. Einstellungen Gerät

Die Berechnungsgrundlagen für den EN 50160-Report werden den aktuellen Geräteeinstellungen entnommen und in die Reports gedruckt.

Bevor Sie Änderungen an den Anschlussparametern vornehmen, drucken Sie eventuell vorhandene EN 50160-Reports aus und löschen Sie die Historie des EN 50160-Speichers.

Andernfalls können Sie die einzelnen Reports wegen unterschiedlicher Berechnungsgrundlagen nicht mehr miteinander vergleichen. Der Report, der während der Parameterumstellung geschrieben wird, kann nicht verwendet werden.

Die Änderung folgender Parameter führt dazu, dass bereits vorhandene EN 50160-Reports nicht mehr verwendet werden können:

- Aktualisierungsintervall Frequenz
- max. Ordnung Harmonische zur Berechnung THD, TEHD, TOHD
- Starttag EN 50160- Bericht
- Ankopplung (Stern oder Dreieck)
- PT Primär
- PT Sekundär
- Nennspannung, bezogen auf die Sekundärspannung
- Nennfrequenz
- Flicker Modus
- Netz Signalübertragungsspannung Freguenz 1...3
- Netz Signalübertragungsspannung Schwellenwert 1...3
- Zeiteinstellungen

9.1 Löschen

Manuelles Löschen folgender Rekorder

- Historie Kurvenformrekorders 1
- Historie Kurvenformrekorders 2
- SOE-Log
- PQ-Log
- Historie des EN 50160 Reports
- aller Minimal- und Maximalwerte des aktuellen Monats
- Energiezählerstände

9.2 Digitaler Eingang

Wählen Sie den einzustellenden Eingang 1...8.

Modus

Einstellmöglichkeiten:

- Normal
- Impulszähler
- Bedarfssynchronisierung
- Impulse pro Sekunde

Für DI1...8 darf

- maximal ein DI auf "Bedarfssynchronisierung" und
- maximal ein DI auf "Impulse pro Sekunde"

konfiguriert werden.

Entprellzeit

Zeitraum, den ein Signal am DI anliegen muss, um erkannt zu werden Einstellmöglichkeiten: 1...1000 ms

Impulswertigkeit (nur bei Modus "Impulszähler")

Spezifiziert den inkrementellen Wert für jeden empfangenen Impuls. Einstellmöglichkeiten: 0...1.000.000

9.3 Digitaler Ausgang

Modus DO1...2

Einstellmöglichkeiten:

- Fernsteuerung/Alarm
- RMS kWh Import
- Grundschwingung kWh Import
- Harmonische kWh Import
- RMS kWh Export
- Grundschwingung kWh Export
- Harmonische kWh Export

Sobald ein Trigger (Standard-Setpoint, Highspeed-Setpoint, Spannungsüberhöhung, -einbruch und -unterbrechung, Transienten, schnelle Spannungsänderung) einen DO aktivieren soll, muss für diesen DO der Modus "Fernsteuerung/Alarm" eingestellt werden. Dieser DO steht dann für keine andere Einstellung mehr zur Verfügung.

Impulsbreite DO1...2

Einstellmöglichkeiten 0...600 s

Impulsbreite Relais 1...4

Einstellmöglichkeiten 0...600 s

9.4 Anschluss

Hinweis bei Verwendung von EN 50160-Reports:

Bevor Sie Änderungen an den Anschlussparametern vornehmen, drucken Sie eventuell vorhandene EN 50160-Reports aus und löschen Sie die Historie des EN 50160-Speichers.

Andernfalls können Sie die einzelnen Reports wegen unterschiedlicher Berechnungsgrundlagen nicht mehr miteinander vergleichen. Der Report, der während der Parameterumstellung geschrieben wird, kann nicht verwendet werden.

Die Änderung folgender Parameter führt dazu, dass bereits vorhandene EN 50160-Reports nicht mehr verwendet werden können:

- Aktualisierungsintervall Frequenz
- max. Ordnung Harmonische zur Berechnung THD, TEHD, TOHD
- Starttag EN 50160- Bericht
- Ankopplung (Stern oder Dreieck)
- PT Primär
- PT Sekundär
- Nennspannung, bezogen auf die Sekundärspannung
- Nennfrequenz
- Flicker Modus
- Netz Signalübertragungsspannung Frequenz 1...3
- Netz Signalübertragungsspannung Schwellenwert 1...3

Ankopplung

Wählen Sie zu Beginn der Arbeit mit PEM735 die entsprechende Ankopplung. Mögliche Einstellwerte:

- DFMO
- Stern
- Dreieck

Bei DEMO findet keine Messung statt. Es werden lediglich zufällige Werte dargestellt. Anwendung: Produktpräsentation.

PT primär

Einstellwerte: 1...1.000.000 V

PT sekundär

Einstellwerte: 1...690 V

CT primär

Einstellwerte: 1...30.000 A

CT sekundär

Einstellwerte: 1...5 A

U4 primär

Einstellwerte: 1...1.000.000 V

U4 sekundär

Einstellwerte: 1...400 V

14 primär

Einstellwerte: 1...30.000 A

14 sekundär

Einstellwerte: 1...5 A

Nennspannung

Einstellwerte: 1...700 V

Nennfrequenz

Einstellwerte: 50 oder 60 Hz

CT 1...4 Polarität tauschen

Je nach Bedarf können Sie für jeden der bis zu vier angeschlossenen Messstromwandler die Polarität tauschen von normal ("aus") zu invertiert ("ein").

9.5 Berechnungseinstellungen

Leistungsfaktor \(\lambda \)

Einstellmöglichkeiten: IEC, IEEE, -IEEE

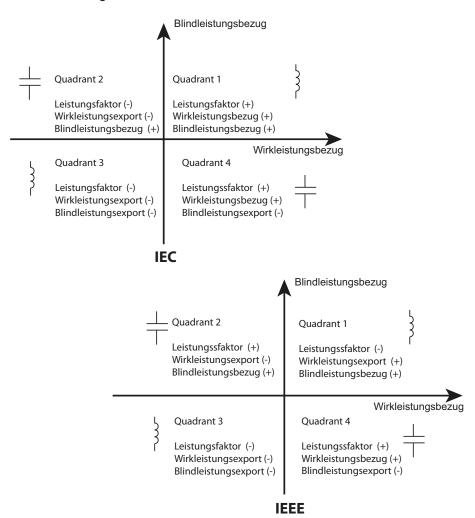


Abb. 9.1: Leistungsfaktor λ Regeln

 $\hbox{\tt ,IEEE" und ,\tt -IEEE" unterscheiden sich lediglich durch vertauschte Vorzeichen.}$

Berechnungsart

Einstellmöglichkeiten: Vektor, Skalar

Es gibt zwei Arten der Berechnung der Scheinleistung:

Vektormethode V:

Skalarmethode S:

$$S_{\text{ges}} = -\sqrt{P_{\text{ges}}^2 + Q_{\text{ges}}^2}$$

$$S_{\text{ges}} = S_{\text{L1}} + S_{\text{L2}} + S_{\text{L3}}$$

Berechnung Klirrfaktor

Einstellmöglichkeiten:

% der Grundschwingung

THD-Berechnung einer individuellen Oberschwingung (bezogen auf die Grundschwingung U_1 bzw. I_1)

THD
$$U(k) = \frac{U_k}{U_1} \times 100 \%$$

THD
$$I(k) = \frac{I_k}{I_1} \times 100 \%$$

% des Effektivwertes

Klirrfaktorberechnung einer individuellen Oberschwingung (THF, bezogen auf den Gesamtwert $U_{\rm qes}$ bzw. $I_{\rm qes}$)

THF_{U(k)} =
$$\frac{U_k}{\sqrt{\sum_{k=1}^{63} U_k^2}}$$
 x 100 %

THF_{I(k)} =
$$\frac{I_k}{\sqrt{\sum_{k=1}^{63} I_k^2}}$$
 x 100 %

Berechnung Oberschwingungen

Einstellungen: Gruppe, Untergruppe

Berechnung N-te Oberschwingung Strom

Einstellungen: Verzerrung, RMS

Bei "RMS" werden die Harmonischen als RMS-Wert dargestellt (in A). Bei "Verzerrung" werden die Harmonischen als Prozentwert angezeigt, basierend auf der eingestellten "Berechnung Oberschwingungen", also in Prozent bezogen auf die Grundschwingung (% der Grundschwingung) oder in Prozent bezogen auf den RMS Wert (% des Effektivwertes).

Berechnung N-te Oberschwingung Spannung

Einstellungen: Verzerrung, RMS

Bei "RMS" werden die Harmonischen als RMS-Wert dargestellt (in V). Bei "Verzerrung" werden die Harmonischen als Prozentwert angezeigt, basierend auf der eingestellten "Berechnung Oberschwingungen", also in Prozent bezogen auf die Grundschwingung (% der Grundschwingung) oder in Prozent bezogen auf den RMS Wert (% des Effektivwertes).

Ordnung Harmonische

Anzahl der zu ermittelnden Harmonischen festlegen, die in die Berechnung von THD, TEHD und TOHD eingehen.

Einstellmöglichkeiten: 2...63

Bei Verwendung von EN 50160-Reports muss hier "40" eingestellt sein.

Aktualisierungszyklus Frequenz

Einstellmöglichkeiten: 1 s, 10 s

Bei Verwendung von EN 50160-Reports muss hier, 10 s" eingestellt sein.

Flickermodus

Einstellmöglichkeiten: 230 V, 120 V

Netz-Signalübertragungsspannung Frequenz 1...3

Einstellmöglichkeiten 60...3000 Hz

Netz-Signalübertragungsspannung Schwellenwert 1...3

Einstellmöglichkeiten 0.3...100 %

Netz-Signalübertragungsspannung sind der Versorgungsspannung überlagerte Signale, die dazu dienen, Informationen im öffentlichen Elektrizitätsversorgungsnetz und in die Räume des Netznutzers zu übertragen.

PEM735 kann in drei verschiedenen Frequenzbereichen die Spannung der Signale ermitteln. Die Grenzen der Frequenzbereiche können vom Benutzer festgelegt werden. Der Frequenzbereich ist nach oben auf 3 kHz begrenzt.

EN 50160 Starttag

Festlegen, an welchem Tag in der Woche der EN 50160-Report beginnen soll. Einstellmöglichkeiten Sonntag...Samstag

9.6 Serielle Schnittstelle

COM1...2 Protokoll

Einstellwerte: Modbus, Zeit

Bei der Einstellung "Zeit" können GPS- und IRIG-B-Zeitquellen angeschlossen werden. Die Konfiguration dieser Zeitquellen muss über Modbus-TCP erfolgen, siehe entsprechende Dokumentation.

COM1...2 UnitId

Einstellwerte: 1...247

COM1...2 Baudrate

Einstellwerte:

1200

2400

4800

9600

19200

.

38400

Die Baudrate ist die Symbolrate (Schrittgeschwindigkeit) der Schnittstelle. Sie gibt an, wie viele Symbole pro Sekunde übertragen werden. **Die Baudrate muss auf Sende- und Empfangsseite gleich eingestellt werden.**

COM1...2 Paritätsbit

Einstellwerte: 8N2, 8O1, 8E1, 8N1, 8E2, 8O2

Mit der Paritätskontrolle lassen sich fehlerhaft übertragene Datenwörter erkennen. Bei den unterschiedlichen Einstellmöglichkeiten bezeichnet die

- erste Zahl die Länge des Datenworts (8 Bit),
- der Buchstabe bezeichnet die Parität
 N: No Parity keine Parität;
 E: Even Parity gerade Parität;
 O: Odd Parity ungerade Parität
- die zweite Zahl die Anzahl der Stoppbits.

Wichtig ist hier, dass die Einstellung auf Sende- und Empfangsseite gleich ist.

9.7 Ethernet

feste IP-Adresse

IP-Adresse eingeben.
DHCP wird nicht unterstützt.

Subnetz-Maske

Standard Gateway

9.8 Uhr

Zeitzone und Uhr einstellen.

9.9 Info/Update

Info

- Webversion
- Hardware
- ARM Firmware
- DSP Firmware
- Firmware Date
- Serien-Nr.

Update

Um die Firmware zu aktualisieren, suchen Sie mit "Datei auswählen" die Update-Datei, markieren sie und klicken auf "Update".

10. Glossar und Begriffe

Kürzel/Begriff	Langform	Erklärung/Bemerkung
Bedarf		auch: aktueller Bedarf; gemittelte Leistungs- verbrauchswerte im letzten abgeschlossenen Zeitraum
СОММ	Communication	
DI	Digital Input	Digitaleingang (2,4 mA, DC 24 V)
Dip (British English)		= sag (American English)
Sag Threshold		Schwellenwert Spannungseinbruch
DMD	Present Demand	Aktueller Bedarf
DO	Digital Output	Digitaler Ausgang (max. 50 mA, max. 80 V)
DR	Data Recorder	Datenrekorder
Effektivwert		positive Quadratwurzel aus dem arithmeti- schen Mittelwert des Quadrats der Größe innerhalb Zeitintervalls/Bandbreite
Entprellzeit		Zeitraum, den ein Signal am DI anliegen muss, um erkannt zu werden
FIFO	First In First Out	Ringspeicher: wenn der Speicher voll ist, werden die ältesten Einträge mit den neuen Werten überschrieben
Flagged data		Markierte Messwerte: Messwerte (gemessen oder aufgerechnet), die markiert wurden, um anzuzeigen, dass sie von Unterbrechungen, Spannungsüberhö- hungen oder Spannungseinbrüchen beein- flusst sein könnten
Float		Gleitkommazahl, Registergröße 4 Byte
Fund.	Fundamental	Grundschwingung

Kürzel/Begriff	Langform	Erklärung/Bemerkung	
GB	Giga Byte		
GPS	Global Positioning System		
HS	High-Speed	Hochgeschwindigkeit	
k-Faktor		Der k-Faktor bezieht sich auf das Vermögen verzerrter Ströme, Verlustleistung in z.B. Transformatoren zu generieren (Maß für die "Verunreinigung" des Stroms mit Ober- schwingungen)	
Klirrfaktor		siehe THF	
LCD	Liquid Crystal Display		
МВ	Mega Byte		
Р		Wirkleistung in kW	
P95	Messwert des 95. Perzentils	95. Perzentil: 95 % der Werte sind kleiner oder gleich diesem Messwert	
Perzentil		Prozentrang, der eine Verteilung in 100 umfangsgleiche Teile zerlegt	
Plt	Perceptibility unit long term	Langzeit-Flicker (2-Stunden-Wert, kubischer Mittelwert aus 12 Pst)	
PPS	Pulse Per Second	Puls pro Sekunde	
PQ	Power Quality		
Prognose		Hochgerechnete mittlere Leistungsver- brauchswerte im aktuellen, nicht abgeschlos- senen Zeitraum	
Pst	Perceptibility unit short term	Kurzzeit-Flicker; 10-Minuten-Wert	
Pulsweite		Zeit, in der DO bzw. RO aktiv bleibt	

Kürzel/Begriff	Langform	Erklärung/Bemerkung	
Q		Blindleistung	
rms	Root mean square	Effektivwert	
RO	Relay Output	Relaisausgang	
Rundsteuersignal		Spannungen aus der Signalübertragung auf elektrischen Niederspannungsnetzen; stellen ein Signalpaket dar. Verwendet werden Frequenzen, die keine Oberschwingungsfrequenzen sind. Dienen zur Fernsteuerung industrieller Einrichtungen, Zählereinrichtungen und anderer Geräte. f < 3 kHz;	
S		Scheinleistung	
Sag (American English)		= dip (British English)	
Schrittweite		Wert, der pro Impuls in das Register geschrie- ben wird; Registerinhalt/Schrittweite = Anzahl der gemessenen Impulse	
SOE	Sequence Of Events	Ereignisse	
Spannungs- einbruch		Vorübergehende Verringerung der Spannung auf einen Betrag unterhalb einer Schwelle von 90 % von $U_{\rm n}$ mit einer Hysterese von 2 %; Spannungsunterbrechungen sind besondere Spannungseinbrüche.	
Spannungs- überhöhung (Einphasennetz)		Beginnt, wenn $U_{\rm rms}$ oberhalb des Schwellenwertes der Spannungsüberhöhung ansteigt; endet, wenn $U_{\rm rms}$ gleich oder unterhalb des Schwellenwertes der Spannungsüberhöhung minus Hysteresespannung ist; Schwellenwerte für Spannungsüberhöhungen üblicherweise > 110 % von $U_{\rm din}$; Hysterese üblicherweise 2 % von $U_{\rm din}$	

Kürzel/Begriff	Langform	Erklärung/Bemerkung	
Spannungs- überhöhung (Mehrphasen- system)		Beginnt, wenn $U_{\rm rms}$ in mindestens einem Kanal oberhalb des Schwellenwertes der Spannungsüberhöhung ansteigt; endet, wenn $U_{\rm rms}$ in allen gemessenen Kanälen gleich oder unterhalb des Schwellenwertes der Spannungsüberhöhung minus Hysteresespannung ist; Schwellenwerte für Spannungsüberhöhungen üblicherweise > 110 % von $U_{\rm din}$; Hysterese üblicherweise 2 % von $U_{\rm din}$	
Spannungs- unterbrechung (Einphasennetz)		Beginnt, wenn $U_{\rm rms}$ unterhalb des Schwellenwertes der Spannungsunterbrechung fällt; endet, wenn $U_{\rm rms}$ gleich oder oberhalb des Schwellenwertes der Spannungsunterbrechung plus Hysteresespannung ist Schwellenwerte für Spannungsunterbrechungen üblicherweise 5 % oder 10 % von $U_{\rm din}$; Hysterese üblicherweise 2 % von $U_{\rm din}$	
Spannungs- unterbrechung (Mehrphasen- system)		Beginnt, wenn $U_{\rm rms}$ in allen Kanälen unterhalb des Schwellenwertes der Spannungsunterbrechung fällt; endet, wenn $U_{\rm rms}$ in einem beliebigen gemessenen Kanal gleich oder oberhalb des Schwellenwertes der Spannungsunterbrechung plus Hysteresespannung ist; Schwellenwerte für Spannungsunterbrechungen üblicherweise 5 % oder 10 % von $U_{\rm din}$; Hysterese üblicherweise 2 % von $U_{\rm din}$	
Swell		Spannungsüberhöhung	
SYNC DI	Demand Sync Input	Digitaler Eingang Bedarfssynchronisierung	
TEHD	Total Even Harmonic Distortion	geradzahlige Gesamtoberschwingungs- verzerrung	
THD	Total Harmonic Distortion	Gesamtoberschwingungsverzerrung	

Kürzel/Begriff	Langform	Erklärung/Bemerkung	
THF	Total Harmonic Factor	(= Klirrfaktor) Berechnung einer individuellen Oberschwingung bezogen auf den Gesamteffektivwert $U_{\rm ges}$ bzw. $I_{\rm ges}$	
TOHD	Total Odd Harmonic Distortion	ungeradzahlige Gesamtoberschwingungs- verzerrung	
Transienten		der Versorgungsspannung überlagerte kurzzeitige Spannungsänderungen	
U ₀		Nullsystemkomponente	
<i>u</i> ₀		Nullsystemkomponente (Verhältnis als Prozentwert); $u_0 = (U_0/U_1) \times 100 \%$	
U ₀ / I ₀		Nullsystemkomponente Spannung/Strom	
U ₀ / I ₀ Unb		Unsymmetrie Nullsystemkomponente Spannung/Strom	
<i>U</i> ₁		Mitsystemkomponente	
U ₁ / I ₁		Mitsystemkomponente Spannung/Strom	
U ₂		Gegensystemkomponente	
<i>u</i> ₂		Verhältnis der Gegensystemkomponente als Prozentwert; $u_2 = (U_2/U_1) \times 100 \%$	
U2 / I2		Gegensystemkomponente Spannung/Strom	
U2 / I2 Unb		Unsymmetrie Gegensystemkomponente Spannung/Strom	
U _{din}	Declared input voltage	ein von der vereinbarten Versorgungsspan- nung mithilfe des Messwandlerübersetzungs- verhältnisses abgeleiteter Wert	
UINT16	Unsigned integer 16 bit	vorzeichenlose Ganzzahl, Registergröße 2 Byte (High Byte, Low Byte)	

Kürzel/Begriff	Langform	Erklärung/Bemerkung		
UINT32	Unsigned integer 32 bit	vorzeichenlose Ganzzahl, Registergröße 4 Byte (HiWord, LoWord)		
unb	Unbalance	Unsymmetrie		
Unsymmetrie der Versorgungsspan- nung		ungleiche Effektivwerte der Außenleiterspan- nungen (Grundschwingungsanteil) oder Pha- senwinkeldifferenzen aufeinanderfolgender Außenleiter; nur für dreiphasige Netze anwendbar		
<i>U</i> _{res}	Restspannung	kleinster Wert von $U_{rms(1/2)}$ {Klasse A}, der während eines Spannungseinbruchs oder einer Unterbrechung ermittelt wird; die Restspannung wird (bezogen auf die vereinbarte Spannung) als ein Wert in V oder % oder als per-Unit-Wert ausgedrückt		
U _{rms(1)}		Effektivwert einer Periode, der jede Periode erneuert wird		
U _{rms(1/2)}	Half-Cycle RMS Voltage	Effektivwert, der jede Halbperiode erneuert wird (Effektivwert einer Periode zwischen den Nulldurchgängen der Grundschwingung)		
U _{sr}	Sliding Reference Voltage	gleitende Referenzspannung , wird grundsätzlich nicht in Niederspannungsnetzen verwendet; wird mit einem Filter erster Ordnung und einer Zeitkonstanten von einer Minute berechnet. Der Filter ist gegeben durch $U_{\rm sr(n)}=0,9967\times U_{\rm sr(n-1)}+0,0033\times U_{\rm rms}$ mit $U_{\rm sr(n)}=$ aktueller Wert der gleitenden Referenzspannung $U_{\rm sr(n-1)}=$ vorletzter Wert der gleitenden Referenzspannung $U_{\rm rms}=$ aktueller Wert des Spannungseffektivwerts		
WF	Waveform	Kurvenform		

Kürzel/Begriff	Langform	Erklärung/Bemerkung	
WFR	Waveform Recorder	Kurvenformrekorder	
Zwischen- harmonische		Zwischenharmonische zwischen der (n-1)-ten und der n-ten Harmonischen	

INDEX

Α

Aktualisierungszyklus Frequenz 68 Anschluss 64 Außenleiterspannungen 18

В

Berechnungseinstellungen 66

D

Datenrekorder 25
Datenrekorder (Einstellungen) 55
Digitaler Ausgang 63
Digitaler Eingang 62

F

EN 50160-Report 9 Energie 21 Ethernet 70

F

Flickerstärke 12

н

Harmonische 20 Highspeed-Datenrekorder (Einstellungen) 57 Highspeed-Setpoint 49

Т

Info 71

K

Klassifikation (PQ-Log) 43 Klassifizierung (SOE-Log) 28 Klirrfaktor 67 Kurvenformrekorder 26, 59

L

Leistung 21 Leistungsfaktor 66 Löschen 62

Ν

Netzfrequenz 11 Netz-Signalübertragungsspannung 15, 69

0

Oberschwingungen 20 Oberschwingungsspannung 13

Ρ

PQ-Log 42

R

Referenzspannung 50 Rundsteuersignale 15

S

Schnelle Spannungsänderungen 16, 53 Serielle Schnittstelle 69 Setpoint-Rekorder-Matrix 45 SOE-Log 27 Spannungseinbrüche 16 Spannungsschwankungen 11

Spannungsüberhöhung, -einbruch und -unterbrechung 50 Spannungsunterbrechungen 16 Standard-Setpoint 47 Startseite 7 Strangspannungen 18 Strom 19

Т

Transienten 52

U

Uhr 70 Unsymmetrie der Versorgungsspannung 12

Ζ

Zeigerdiagramm 17 Zwischenharmonische Spannungen 15

Bender GmbH & Co. KG

Postfach 1161 • 35301 Grünberg • Germany Londorfer Str. 65 • 35305 Grünberg • Germany

Tel.: +49 6401 807-0 Fax: +49 6401 807-259

E-Mail: info@bender.de

www.bender.de

BENDER Group